Update Large Steam Turbine
* Multiple input hatches now handled properly. * Now use 125% maximum input consumption and penalty * We now track averageFlow and totalFlow separately: we don't want turbine byproducts generated from the average, but the actual consumption. Notes from last pull: * We track 125% allowance via remainingFlow. We do still attempt to pull 125% from each hatch, but only up to our 125% overall allowance. (So even with two hatches, we can still only pull 500 steam total from a 400 steam rotor) * With remainingFlow, we gain optimization: we don't even check unnecessary hatches if the first one provided enough steam. * Reinstated averageFlow. * added a ton of comments for your convenience.
This commit is contained in:
parent
c71e7473d6
commit
a170c6529a
1 changed files with 24 additions and 13 deletions
|
@ -67,21 +67,32 @@ public class GT_MetaTileEntity_LargeTurbine_Steam extends GT_MetaTileEntity_Larg
|
||||||
@Override
|
@Override
|
||||||
int fluidIntoPower(ArrayList<FluidStack> aFluids, int aOptFlow, int aBaseEff) {
|
int fluidIntoPower(ArrayList<FluidStack> aFluids, int aOptFlow, int aBaseEff) {
|
||||||
int tEU=0;
|
int tEU=0;
|
||||||
int tOut=0;
|
int averageFlow = 0; // To prevent closed water loops from breaking. EU is based on average flow
|
||||||
for(int i=0;i<aFluids.size();i++){
|
int totalFlow = 0; // Byproducts are based on actual flow
|
||||||
|
int flow = 0;
|
||||||
|
int remainingFlow = (int)(aOptFlow * 1.25f); // Allowed to use up to 125% of optimal flow. Variable required outside of loop for multi-hatch scenarios.
|
||||||
|
|
||||||
|
for(int i=0;i<aFluids.size() && remainingFlow > 0;i++){ // loop through each hatch; extract inputs and track totals.
|
||||||
if(aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("fluid.steam")||aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("ic2.fluidSteam")){
|
if(aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("fluid.steam")||aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("ic2.fluidSteam")){
|
||||||
tOut = Math.min((int)(aOptFlow*1.5f),aFluids.get(i).amount);
|
flow = aFluids.get(i).amount; // Get all (steam) in hatch
|
||||||
depleteInput(new FluidStack(aFluids.get(i), tOut));
|
flow = Math.min(flow, Math.min(remainingFlow, (int)( aOptFlow * 1.25f))); // try to use up to 125% of optimal flow w/o exceeding remainingFlow
|
||||||
|
depleteInput(new FluidStack(aFluids.get(i), flow)); // deplete that amount
|
||||||
|
remainingFlow -= flow; // track amount we're allowed to continue depleting from hatches
|
||||||
|
totalFlow += flow; // track total input used
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
tOut = getAverage(tOut);
|
averageFlow = getAverage(totalFlow); // calculate recent average usage for power output purposes but NOT byproduct generation. We used what we used, and get byproducts from that.
|
||||||
tEU = Math.min(aOptFlow,tOut);
|
|
||||||
addOutput(GT_ModHandler.getDistilledWater(useWater(tOut/160.0f)));
|
tEU = Math.min(aOptFlow, averageFlow);
|
||||||
if(tOut>0&&tOut<aOptFlow){
|
addOutput(GT_ModHandler.getDistilledWater(useWater(totalFlow/160.0f)));
|
||||||
tEU = tEU*(tOut*100/aOptFlow)+3;
|
if(averageFlow > 0 && averageFlow != aOptFlow){
|
||||||
}
|
float efficiency = 1.0f - Math.abs(((averageFlow - (float)aOptFlow) / aOptFlow));
|
||||||
return tEU * aBaseEff / 20000;
|
tEU *= efficiency;
|
||||||
|
tEU = Math.max(1, tEU * aBaseEff / 20000);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
tEU = tEU * aBaseEff / 20000;
|
||||||
|
}
|
||||||
|
return tEU;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue