diff --git a/KP3Dii/KP3Dii.vcxproj b/KP3Dii/KP3Dii.vcxproj index ab4f352..fd061b7 100644 --- a/KP3Dii/KP3Dii.vcxproj +++ b/KP3Dii/KP3Dii.vcxproj @@ -182,6 +182,7 @@ + diff --git a/KP3Dii/KP3Dii.vcxproj.filters b/KP3Dii/KP3Dii.vcxproj.filters index 4e93f3c..29aa163 100644 --- a/KP3Dii/KP3Dii.vcxproj.filters +++ b/KP3Dii/KP3Dii.vcxproj.filters @@ -99,6 +99,7 @@ + diff --git a/KP3Dii/ext/include/ImGuizmo.h b/KP3Dii/ext/include/ImGuizmo.h new file mode 100644 index 0000000..a755d4e --- /dev/null +++ b/KP3Dii/ext/include/ImGuizmo.h @@ -0,0 +1,272 @@ +// https://github.com/CedricGuillemet/ImGuizmo +// v 1.89 WIP +// +// The MIT License(MIT) +// +// Copyright(c) 2021 Cedric Guillemet +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files(the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions : +// +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +// +// ------------------------------------------------------------------------------------------- +// History : +// 2019/11/03 View gizmo +// 2016/09/11 Behind camera culling. Scaling Delta matrix not multiplied by source matrix scales. local/world rotation and translation fixed. Display message is incorrect (X: ... Y:...) in local mode. +// 2016/09/09 Hatched negative axis. Snapping. Documentation update. +// 2016/09/04 Axis switch and translation plan autohiding. Scale transform stability improved +// 2016/09/01 Mogwai changed to Manipulate. Draw debug cube. Fixed inverted scale. Mixing scale and translation/rotation gives bad results. +// 2016/08/31 First version +// +// ------------------------------------------------------------------------------------------- +// Future (no order): +// +// - Multi view +// - display rotation/translation/scale infos in local/world space and not only local +// - finish local/world matrix application +// - OPERATION as bitmask +// +// ------------------------------------------------------------------------------------------- +// Example +#if 0 +void EditTransform(const Camera& camera, matrix_t& matrix) +{ + static ImGuizmo::OPERATION mCurrentGizmoOperation(ImGuizmo::ROTATE); + static ImGuizmo::MODE mCurrentGizmoMode(ImGuizmo::WORLD); + if (ImGui::IsKeyPressed(90)) + mCurrentGizmoOperation = ImGuizmo::TRANSLATE; + if (ImGui::IsKeyPressed(69)) + mCurrentGizmoOperation = ImGuizmo::ROTATE; + if (ImGui::IsKeyPressed(82)) // r Key + mCurrentGizmoOperation = ImGuizmo::SCALE; + if (ImGui::RadioButton("Translate", mCurrentGizmoOperation == ImGuizmo::TRANSLATE)) + mCurrentGizmoOperation = ImGuizmo::TRANSLATE; + ImGui::SameLine(); + if (ImGui::RadioButton("Rotate", mCurrentGizmoOperation == ImGuizmo::ROTATE)) + mCurrentGizmoOperation = ImGuizmo::ROTATE; + ImGui::SameLine(); + if (ImGui::RadioButton("Scale", mCurrentGizmoOperation == ImGuizmo::SCALE)) + mCurrentGizmoOperation = ImGuizmo::SCALE; + float matrixTranslation[3], matrixRotation[3], matrixScale[3]; + ImGuizmo::DecomposeMatrixToComponents(matrix.m16, matrixTranslation, matrixRotation, matrixScale); + ImGui::InputFloat3("Tr", matrixTranslation, 3); + ImGui::InputFloat3("Rt", matrixRotation, 3); + ImGui::InputFloat3("Sc", matrixScale, 3); + ImGuizmo::RecomposeMatrixFromComponents(matrixTranslation, matrixRotation, matrixScale, matrix.m16); + + if (mCurrentGizmoOperation != ImGuizmo::SCALE) + { + if (ImGui::RadioButton("Local", mCurrentGizmoMode == ImGuizmo::LOCAL)) + mCurrentGizmoMode = ImGuizmo::LOCAL; + ImGui::SameLine(); + if (ImGui::RadioButton("World", mCurrentGizmoMode == ImGuizmo::WORLD)) + mCurrentGizmoMode = ImGuizmo::WORLD; + } + static bool useSnap(false); + if (ImGui::IsKeyPressed(83)) + useSnap = !useSnap; + ImGui::Checkbox("", &useSnap); + ImGui::SameLine(); + vec_t snap; + switch (mCurrentGizmoOperation) + { + case ImGuizmo::TRANSLATE: + snap = config.mSnapTranslation; + ImGui::InputFloat3("Snap", &snap.x); + break; + case ImGuizmo::ROTATE: + snap = config.mSnapRotation; + ImGui::InputFloat("Angle Snap", &snap.x); + break; + case ImGuizmo::SCALE: + snap = config.mSnapScale; + ImGui::InputFloat("Scale Snap", &snap.x); + break; + } + ImGuiIO& io = ImGui::GetIO(); + ImGuizmo::SetRect(0, 0, io.DisplaySize.x, io.DisplaySize.y); + ImGuizmo::Manipulate(camera.mView.m16, camera.mProjection.m16, mCurrentGizmoOperation, mCurrentGizmoMode, matrix.m16, NULL, useSnap ? &snap.x : NULL); +} +#endif +#pragma once + +#ifdef USE_IMGUI_API +#include "imconfig.h" +#endif +#ifndef IMGUI_API +#define IMGUI_API +#endif + +#ifndef IMGUIZMO_NAMESPACE +#define IMGUIZMO_NAMESPACE ImGuizmo +#endif + +namespace IMGUIZMO_NAMESPACE +{ + // call inside your own window and before Manipulate() in order to draw gizmo to that window. + // Or pass a specific ImDrawList to draw to (e.g. ImGui::GetForegroundDrawList()). + IMGUI_API void SetDrawlist(ImDrawList* drawlist = nullptr); + + // call BeginFrame right after ImGui_XXXX_NewFrame(); + IMGUI_API void BeginFrame(); + + // this is necessary because when imguizmo is compiled into a dll, and imgui into another + // globals are not shared between them. + // More details at https://stackoverflow.com/questions/19373061/what-happens-to-global-and-static-variables-in-a-shared-library-when-it-is-dynam + // expose method to set imgui context + IMGUI_API void SetImGuiContext(ImGuiContext* ctx); + + // return true if mouse cursor is over any gizmo control (axis, plan or screen component) + IMGUI_API bool IsOver(); + + // return true if mouse IsOver or if the gizmo is in moving state + IMGUI_API bool IsUsing(); + + // return true if any gizmo is in moving state + IMGUI_API bool IsUsingAny(); + + // enable/disable the gizmo. Stay in the state until next call to Enable. + // gizmo is rendered with gray half transparent color when disabled + IMGUI_API void Enable(bool enable); + + // helper functions for manualy editing translation/rotation/scale with an input float + // translation, rotation and scale float points to 3 floats each + // Angles are in degrees (more suitable for human editing) + // example: + // float matrixTranslation[3], matrixRotation[3], matrixScale[3]; + // ImGuizmo::DecomposeMatrixToComponents(gizmoMatrix.m16, matrixTranslation, matrixRotation, matrixScale); + // ImGui::InputFloat3("Tr", matrixTranslation, 3); + // ImGui::InputFloat3("Rt", matrixRotation, 3); + // ImGui::InputFloat3("Sc", matrixScale, 3); + // ImGuizmo::RecomposeMatrixFromComponents(matrixTranslation, matrixRotation, matrixScale, gizmoMatrix.m16); + // + // These functions have some numerical stability issues for now. Use with caution. + IMGUI_API void DecomposeMatrixToComponents(const float* matrix, float* translation, float* rotation, float* scale); + IMGUI_API void RecomposeMatrixFromComponents(const float* translation, const float* rotation, const float* scale, float* matrix); + + IMGUI_API void SetRect(float x, float y, float width, float height); + // default is false + IMGUI_API void SetOrthographic(bool isOrthographic); + + // Render a cube with face color corresponding to face normal. Usefull for debug/tests + IMGUI_API void DrawCubes(const float* view, const float* projection, const float* matrices, int matrixCount); + IMGUI_API void DrawGrid(const float* view, const float* projection, const float* matrix, const float gridSize); + + // call it when you want a gizmo + // Needs view and projection matrices. + // matrix parameter is the source matrix (where will be gizmo be drawn) and might be transformed by the function. Return deltaMatrix is optional + // translation is applied in world space + enum OPERATION + { + TRANSLATE_X = (1u << 0), + TRANSLATE_Y = (1u << 1), + TRANSLATE_Z = (1u << 2), + ROTATE_X = (1u << 3), + ROTATE_Y = (1u << 4), + ROTATE_Z = (1u << 5), + ROTATE_SCREEN = (1u << 6), + SCALE_X = (1u << 7), + SCALE_Y = (1u << 8), + SCALE_Z = (1u << 9), + BOUNDS = (1u << 10), + SCALE_XU = (1u << 11), + SCALE_YU = (1u << 12), + SCALE_ZU = (1u << 13), + + TRANSLATE = TRANSLATE_X | TRANSLATE_Y | TRANSLATE_Z, + ROTATE = ROTATE_X | ROTATE_Y | ROTATE_Z | ROTATE_SCREEN, + SCALE = SCALE_X | SCALE_Y | SCALE_Z, + SCALEU = SCALE_XU | SCALE_YU | SCALE_ZU, // universal + UNIVERSAL = TRANSLATE | ROTATE | SCALEU + }; + + inline OPERATION operator|(OPERATION lhs, OPERATION rhs) + { + return static_cast(static_cast(lhs) | static_cast(rhs)); + } + + enum MODE + { + LOCAL, + WORLD + }; + + IMGUI_API bool Manipulate(const float* view, const float* projection, OPERATION operation, MODE mode, float* matrix, float* deltaMatrix = NULL, const float* snap = NULL, const float* localBounds = NULL, const float* boundsSnap = NULL); + // + // Please note that this cubeview is patented by Autodesk : https://patents.google.com/patent/US7782319B2/en + // It seems to be a defensive patent in the US. I don't think it will bring troubles using it as + // other software are using the same mechanics. But just in case, you are now warned! + // + IMGUI_API void ViewManipulate(float* view, float length, ImVec2 position, ImVec2 size, ImU32 backgroundColor); + + // use this version if you did not call Manipulate before and you are just using ViewManipulate + IMGUI_API void ViewManipulate(float* view, const float* projection, OPERATION operation, MODE mode, float* matrix, float length, ImVec2 position, ImVec2 size, ImU32 backgroundColor); + + IMGUI_API void SetID(int id); + + // return true if the cursor is over the operation's gizmo + IMGUI_API bool IsOver(OPERATION op); + IMGUI_API void SetGizmoSizeClipSpace(float value); + + // Allow axis to flip + // When true (default), the guizmo axis flip for better visibility + // When false, they always stay along the positive world/local axis + IMGUI_API void AllowAxisFlip(bool value); + + // Configure the limit where axis are hidden + IMGUI_API void SetAxisLimit(float value); + // Configure the limit where planes are hiden + IMGUI_API void SetPlaneLimit(float value); + + enum COLOR + { + DIRECTION_X, // directionColor[0] + DIRECTION_Y, // directionColor[1] + DIRECTION_Z, // directionColor[2] + PLANE_X, // planeColor[0] + PLANE_Y, // planeColor[1] + PLANE_Z, // planeColor[2] + SELECTION, // selectionColor + INACTIVE, // inactiveColor + TRANSLATION_LINE, // translationLineColor + SCALE_LINE, + ROTATION_USING_BORDER, + ROTATION_USING_FILL, + HATCHED_AXIS_LINES, + TEXT, + TEXT_SHADOW, + COUNT + }; + + struct Style + { + IMGUI_API Style(); + + float TranslationLineThickness; // Thickness of lines for translation gizmo + float TranslationLineArrowSize; // Size of arrow at the end of lines for translation gizmo + float RotationLineThickness; // Thickness of lines for rotation gizmo + float RotationOuterLineThickness; // Thickness of line surrounding the rotation gizmo + float ScaleLineThickness; // Thickness of lines for scale gizmo + float ScaleLineCircleSize; // Size of circle at the end of lines for scale gizmo + float HatchedAxisLineThickness; // Thickness of hatched axis lines + float CenterCircleSize; // Size of circle at the center of the translate/scale gizmo + + ImVec4 Colors[COLOR::COUNT]; + }; + + IMGUI_API Style& GetStyle(); +} diff --git a/KP3Dii/ext/src/imgui/ImGuizmo.cpp b/KP3Dii/ext/src/imgui/ImGuizmo.cpp new file mode 100644 index 0000000..645b25b --- /dev/null +++ b/KP3Dii/ext/src/imgui/ImGuizmo.cpp @@ -0,0 +1,2996 @@ +// https://github.com/CedricGuillemet/ImGuizmo +// v 1.89 WIP +// +// The MIT License(MIT) +// +// Copyright(c) 2021 Cedric Guillemet +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files(the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions : +// +// The above copyright notice and this permission notice shall be included in all +// copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. +// + +#ifndef IMGUI_DEFINE_MATH_OPERATORS +#define IMGUI_DEFINE_MATH_OPERATORS +#endif +#include "imgui.h" +#include "imgui_internal.h" +#include "ImGuizmo.h" + +#if defined(_MSC_VER) || defined(__MINGW32__) +#include +#endif +#if !defined(_MSC_VER) && !defined(__MINGW64_VERSION_MAJOR) +#define _malloca(x) alloca(x) +#define _freea(x) +#endif + +// includes patches for multiview from +// https://github.com/CedricGuillemet/ImGuizmo/issues/15 + +namespace IMGUIZMO_NAMESPACE +{ + static const float ZPI = 3.14159265358979323846f; + static const float RAD2DEG = (180.f / ZPI); + static const float DEG2RAD = (ZPI / 180.f); + const float screenRotateSize = 0.06f; + // scale a bit so translate axis do not touch when in universal + const float rotationDisplayFactor = 1.2f; + + static OPERATION operator&(OPERATION lhs, OPERATION rhs) + { + return static_cast(static_cast(lhs) & static_cast(rhs)); + } + + static bool operator!=(OPERATION lhs, int rhs) + { + return static_cast(lhs) != rhs; + } + + static bool Intersects(OPERATION lhs, OPERATION rhs) + { + return (lhs & rhs) != 0; + } + + // True if lhs contains rhs + static bool Contains(OPERATION lhs, OPERATION rhs) + { + return (lhs & rhs) == rhs; + } + + /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + // utility and math + + void FPU_MatrixF_x_MatrixF(const float* a, const float* b, float* r) + { + r[0] = a[0] * b[0] + a[1] * b[4] + a[2] * b[8] + a[3] * b[12]; + r[1] = a[0] * b[1] + a[1] * b[5] + a[2] * b[9] + a[3] * b[13]; + r[2] = a[0] * b[2] + a[1] * b[6] + a[2] * b[10] + a[3] * b[14]; + r[3] = a[0] * b[3] + a[1] * b[7] + a[2] * b[11] + a[3] * b[15]; + + r[4] = a[4] * b[0] + a[5] * b[4] + a[6] * b[8] + a[7] * b[12]; + r[5] = a[4] * b[1] + a[5] * b[5] + a[6] * b[9] + a[7] * b[13]; + r[6] = a[4] * b[2] + a[5] * b[6] + a[6] * b[10] + a[7] * b[14]; + r[7] = a[4] * b[3] + a[5] * b[7] + a[6] * b[11] + a[7] * b[15]; + + r[8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[8] + a[11] * b[12]; + r[9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[9] + a[11] * b[13]; + r[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10] + a[11] * b[14]; + r[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11] * b[15]; + + r[12] = a[12] * b[0] + a[13] * b[4] + a[14] * b[8] + a[15] * b[12]; + r[13] = a[12] * b[1] + a[13] * b[5] + a[14] * b[9] + a[15] * b[13]; + r[14] = a[12] * b[2] + a[13] * b[6] + a[14] * b[10] + a[15] * b[14]; + r[15] = a[12] * b[3] + a[13] * b[7] + a[14] * b[11] + a[15] * b[15]; + } + + void Frustum(float left, float right, float bottom, float top, float znear, float zfar, float* m16) + { + float temp, temp2, temp3, temp4; + temp = 2.0f * znear; + temp2 = right - left; + temp3 = top - bottom; + temp4 = zfar - znear; + m16[0] = temp / temp2; + m16[1] = 0.0; + m16[2] = 0.0; + m16[3] = 0.0; + m16[4] = 0.0; + m16[5] = temp / temp3; + m16[6] = 0.0; + m16[7] = 0.0; + m16[8] = (right + left) / temp2; + m16[9] = (top + bottom) / temp3; + m16[10] = (-zfar - znear) / temp4; + m16[11] = -1.0f; + m16[12] = 0.0; + m16[13] = 0.0; + m16[14] = (-temp * zfar) / temp4; + m16[15] = 0.0; + } + + void Perspective(float fovyInDegrees, float aspectRatio, float znear, float zfar, float* m16) + { + float ymax, xmax; + ymax = znear * tanf(fovyInDegrees * DEG2RAD); + xmax = ymax * aspectRatio; + Frustum(-xmax, xmax, -ymax, ymax, znear, zfar, m16); + } + + void Cross(const float* a, const float* b, float* r) + { + r[0] = a[1] * b[2] - a[2] * b[1]; + r[1] = a[2] * b[0] - a[0] * b[2]; + r[2] = a[0] * b[1] - a[1] * b[0]; + } + + float Dot(const float* a, const float* b) + { + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; + } + + void Normalize(const float* a, float* r) + { + float il = 1.f / (sqrtf(Dot(a, a)) + FLT_EPSILON); + r[0] = a[0] * il; + r[1] = a[1] * il; + r[2] = a[2] * il; + } + + void LookAt(const float* eye, const float* at, const float* up, float* m16) + { + float X[3], Y[3], Z[3], tmp[3]; + + tmp[0] = eye[0] - at[0]; + tmp[1] = eye[1] - at[1]; + tmp[2] = eye[2] - at[2]; + Normalize(tmp, Z); + Normalize(up, Y); + Cross(Y, Z, tmp); + Normalize(tmp, X); + Cross(Z, X, tmp); + Normalize(tmp, Y); + + m16[0] = X[0]; + m16[1] = Y[0]; + m16[2] = Z[0]; + m16[3] = 0.0f; + m16[4] = X[1]; + m16[5] = Y[1]; + m16[6] = Z[1]; + m16[7] = 0.0f; + m16[8] = X[2]; + m16[9] = Y[2]; + m16[10] = Z[2]; + m16[11] = 0.0f; + m16[12] = -Dot(X, eye); + m16[13] = -Dot(Y, eye); + m16[14] = -Dot(Z, eye); + m16[15] = 1.0f; + } + + template T Clamp(T x, T y, T z) { return ((x < y) ? y : ((x > z) ? z : x)); } + template T max(T x, T y) { return (x > y) ? x : y; } + template T min(T x, T y) { return (x < y) ? x : y; } + template bool IsWithin(T x, T y, T z) { return (x >= y) && (x <= z); } + + struct matrix_t; + struct vec_t + { + public: + float x, y, z, w; + + void Lerp(const vec_t& v, float t) + { + x += (v.x - x) * t; + y += (v.y - y) * t; + z += (v.z - z) * t; + w += (v.w - w) * t; + } + + void Set(float v) { x = y = z = w = v; } + void Set(float _x, float _y, float _z = 0.f, float _w = 0.f) { x = _x; y = _y; z = _z; w = _w; } + + vec_t& operator -= (const vec_t& v) { x -= v.x; y -= v.y; z -= v.z; w -= v.w; return *this; } + vec_t& operator += (const vec_t& v) { x += v.x; y += v.y; z += v.z; w += v.w; return *this; } + vec_t& operator *= (const vec_t& v) { x *= v.x; y *= v.y; z *= v.z; w *= v.w; return *this; } + vec_t& operator *= (float v) { x *= v; y *= v; z *= v; w *= v; return *this; } + + vec_t operator * (float f) const; + vec_t operator - () const; + vec_t operator - (const vec_t& v) const; + vec_t operator + (const vec_t& v) const; + vec_t operator * (const vec_t& v) const; + + const vec_t& operator + () const { return (*this); } + float Length() const { return sqrtf(x * x + y * y + z * z); }; + float LengthSq() const { return (x * x + y * y + z * z); }; + vec_t Normalize() { (*this) *= (1.f / ( Length() > FLT_EPSILON ? Length() : FLT_EPSILON ) ); return (*this); } + vec_t Normalize(const vec_t& v) { this->Set(v.x, v.y, v.z, v.w); this->Normalize(); return (*this); } + vec_t Abs() const; + + void Cross(const vec_t& v) + { + vec_t res; + res.x = y * v.z - z * v.y; + res.y = z * v.x - x * v.z; + res.z = x * v.y - y * v.x; + + x = res.x; + y = res.y; + z = res.z; + w = 0.f; + } + + void Cross(const vec_t& v1, const vec_t& v2) + { + x = v1.y * v2.z - v1.z * v2.y; + y = v1.z * v2.x - v1.x * v2.z; + z = v1.x * v2.y - v1.y * v2.x; + w = 0.f; + } + + float Dot(const vec_t& v) const + { + return (x * v.x) + (y * v.y) + (z * v.z) + (w * v.w); + } + + float Dot3(const vec_t& v) const + { + return (x * v.x) + (y * v.y) + (z * v.z); + } + + void Transform(const matrix_t& matrix); + void Transform(const vec_t& s, const matrix_t& matrix); + + void TransformVector(const matrix_t& matrix); + void TransformPoint(const matrix_t& matrix); + void TransformVector(const vec_t& v, const matrix_t& matrix) { (*this) = v; this->TransformVector(matrix); } + void TransformPoint(const vec_t& v, const matrix_t& matrix) { (*this) = v; this->TransformPoint(matrix); } + + float& operator [] (size_t index) { return ((float*)&x)[index]; } + const float& operator [] (size_t index) const { return ((float*)&x)[index]; } + bool operator!=(const vec_t& other) const { return memcmp(this, &other, sizeof(vec_t)) != 0; } + }; + + vec_t makeVect(float _x, float _y, float _z = 0.f, float _w = 0.f) { vec_t res; res.x = _x; res.y = _y; res.z = _z; res.w = _w; return res; } + vec_t makeVect(ImVec2 v) { vec_t res; res.x = v.x; res.y = v.y; res.z = 0.f; res.w = 0.f; return res; } + vec_t vec_t::operator * (float f) const { return makeVect(x * f, y * f, z * f, w * f); } + vec_t vec_t::operator - () const { return makeVect(-x, -y, -z, -w); } + vec_t vec_t::operator - (const vec_t& v) const { return makeVect(x - v.x, y - v.y, z - v.z, w - v.w); } + vec_t vec_t::operator + (const vec_t& v) const { return makeVect(x + v.x, y + v.y, z + v.z, w + v.w); } + vec_t vec_t::operator * (const vec_t& v) const { return makeVect(x * v.x, y * v.y, z * v.z, w * v.w); } + vec_t vec_t::Abs() const { return makeVect(fabsf(x), fabsf(y), fabsf(z)); } + + vec_t Normalized(const vec_t& v) { vec_t res; res = v; res.Normalize(); return res; } + vec_t Cross(const vec_t& v1, const vec_t& v2) + { + vec_t res; + res.x = v1.y * v2.z - v1.z * v2.y; + res.y = v1.z * v2.x - v1.x * v2.z; + res.z = v1.x * v2.y - v1.y * v2.x; + res.w = 0.f; + return res; + } + + float Dot(const vec_t& v1, const vec_t& v2) + { + return (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z); + } + + vec_t BuildPlan(const vec_t& p_point1, const vec_t& p_normal) + { + vec_t normal, res; + normal.Normalize(p_normal); + res.w = normal.Dot(p_point1); + res.x = normal.x; + res.y = normal.y; + res.z = normal.z; + return res; + } + + struct matrix_t + { + public: + + union + { + float m[4][4]; + float m16[16]; + struct + { + vec_t right, up, dir, position; + } v; + vec_t component[4]; + }; + + operator float* () { return m16; } + operator const float* () const { return m16; } + void Translation(float _x, float _y, float _z) { this->Translation(makeVect(_x, _y, _z)); } + + void Translation(const vec_t& vt) + { + v.right.Set(1.f, 0.f, 0.f, 0.f); + v.up.Set(0.f, 1.f, 0.f, 0.f); + v.dir.Set(0.f, 0.f, 1.f, 0.f); + v.position.Set(vt.x, vt.y, vt.z, 1.f); + } + + void Scale(float _x, float _y, float _z) + { + v.right.Set(_x, 0.f, 0.f, 0.f); + v.up.Set(0.f, _y, 0.f, 0.f); + v.dir.Set(0.f, 0.f, _z, 0.f); + v.position.Set(0.f, 0.f, 0.f, 1.f); + } + void Scale(const vec_t& s) { Scale(s.x, s.y, s.z); } + + matrix_t& operator *= (const matrix_t& mat) + { + matrix_t tmpMat; + tmpMat = *this; + tmpMat.Multiply(mat); + *this = tmpMat; + return *this; + } + matrix_t operator * (const matrix_t& mat) const + { + matrix_t matT; + matT.Multiply(*this, mat); + return matT; + } + + void Multiply(const matrix_t& matrix) + { + matrix_t tmp; + tmp = *this; + + FPU_MatrixF_x_MatrixF((float*)&tmp, (float*)&matrix, (float*)this); + } + + void Multiply(const matrix_t& m1, const matrix_t& m2) + { + FPU_MatrixF_x_MatrixF((float*)&m1, (float*)&m2, (float*)this); + } + + float GetDeterminant() const + { + return m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] + m[0][2] * m[1][0] * m[2][1] - + m[0][2] * m[1][1] * m[2][0] - m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]; + } + + float Inverse(const matrix_t& srcMatrix, bool affine = false); + void SetToIdentity() + { + v.right.Set(1.f, 0.f, 0.f, 0.f); + v.up.Set(0.f, 1.f, 0.f, 0.f); + v.dir.Set(0.f, 0.f, 1.f, 0.f); + v.position.Set(0.f, 0.f, 0.f, 1.f); + } + void Transpose() + { + matrix_t tmpm; + for (int l = 0; l < 4; l++) + { + for (int c = 0; c < 4; c++) + { + tmpm.m[l][c] = m[c][l]; + } + } + (*this) = tmpm; + } + + void RotationAxis(const vec_t& axis, float angle); + + void OrthoNormalize() + { + v.right.Normalize(); + v.up.Normalize(); + v.dir.Normalize(); + } + }; + + void vec_t::Transform(const matrix_t& matrix) + { + vec_t out; + + out.x = x * matrix.m[0][0] + y * matrix.m[1][0] + z * matrix.m[2][0] + w * matrix.m[3][0]; + out.y = x * matrix.m[0][1] + y * matrix.m[1][1] + z * matrix.m[2][1] + w * matrix.m[3][1]; + out.z = x * matrix.m[0][2] + y * matrix.m[1][2] + z * matrix.m[2][2] + w * matrix.m[3][2]; + out.w = x * matrix.m[0][3] + y * matrix.m[1][3] + z * matrix.m[2][3] + w * matrix.m[3][3]; + + x = out.x; + y = out.y; + z = out.z; + w = out.w; + } + + void vec_t::Transform(const vec_t& s, const matrix_t& matrix) + { + *this = s; + Transform(matrix); + } + + void vec_t::TransformPoint(const matrix_t& matrix) + { + vec_t out; + + out.x = x * matrix.m[0][0] + y * matrix.m[1][0] + z * matrix.m[2][0] + matrix.m[3][0]; + out.y = x * matrix.m[0][1] + y * matrix.m[1][1] + z * matrix.m[2][1] + matrix.m[3][1]; + out.z = x * matrix.m[0][2] + y * matrix.m[1][2] + z * matrix.m[2][2] + matrix.m[3][2]; + out.w = x * matrix.m[0][3] + y * matrix.m[1][3] + z * matrix.m[2][3] + matrix.m[3][3]; + + x = out.x; + y = out.y; + z = out.z; + w = out.w; + } + + void vec_t::TransformVector(const matrix_t& matrix) + { + vec_t out; + + out.x = x * matrix.m[0][0] + y * matrix.m[1][0] + z * matrix.m[2][0]; + out.y = x * matrix.m[0][1] + y * matrix.m[1][1] + z * matrix.m[2][1]; + out.z = x * matrix.m[0][2] + y * matrix.m[1][2] + z * matrix.m[2][2]; + out.w = x * matrix.m[0][3] + y * matrix.m[1][3] + z * matrix.m[2][3]; + + x = out.x; + y = out.y; + z = out.z; + w = out.w; + } + + float matrix_t::Inverse(const matrix_t& srcMatrix, bool affine) + { + float det = 0; + + if (affine) + { + det = GetDeterminant(); + float s = 1 / det; + m[0][0] = (srcMatrix.m[1][1] * srcMatrix.m[2][2] - srcMatrix.m[1][2] * srcMatrix.m[2][1]) * s; + m[0][1] = (srcMatrix.m[2][1] * srcMatrix.m[0][2] - srcMatrix.m[2][2] * srcMatrix.m[0][1]) * s; + m[0][2] = (srcMatrix.m[0][1] * srcMatrix.m[1][2] - srcMatrix.m[0][2] * srcMatrix.m[1][1]) * s; + m[1][0] = (srcMatrix.m[1][2] * srcMatrix.m[2][0] - srcMatrix.m[1][0] * srcMatrix.m[2][2]) * s; + m[1][1] = (srcMatrix.m[2][2] * srcMatrix.m[0][0] - srcMatrix.m[2][0] * srcMatrix.m[0][2]) * s; + m[1][2] = (srcMatrix.m[0][2] * srcMatrix.m[1][0] - srcMatrix.m[0][0] * srcMatrix.m[1][2]) * s; + m[2][0] = (srcMatrix.m[1][0] * srcMatrix.m[2][1] - srcMatrix.m[1][1] * srcMatrix.m[2][0]) * s; + m[2][1] = (srcMatrix.m[2][0] * srcMatrix.m[0][1] - srcMatrix.m[2][1] * srcMatrix.m[0][0]) * s; + m[2][2] = (srcMatrix.m[0][0] * srcMatrix.m[1][1] - srcMatrix.m[0][1] * srcMatrix.m[1][0]) * s; + m[3][0] = -(m[0][0] * srcMatrix.m[3][0] + m[1][0] * srcMatrix.m[3][1] + m[2][0] * srcMatrix.m[3][2]); + m[3][1] = -(m[0][1] * srcMatrix.m[3][0] + m[1][1] * srcMatrix.m[3][1] + m[2][1] * srcMatrix.m[3][2]); + m[3][2] = -(m[0][2] * srcMatrix.m[3][0] + m[1][2] * srcMatrix.m[3][1] + m[2][2] * srcMatrix.m[3][2]); + } + else + { + // transpose matrix + float src[16]; + for (int i = 0; i < 4; ++i) + { + src[i] = srcMatrix.m16[i * 4]; + src[i + 4] = srcMatrix.m16[i * 4 + 1]; + src[i + 8] = srcMatrix.m16[i * 4 + 2]; + src[i + 12] = srcMatrix.m16[i * 4 + 3]; + } + + // calculate pairs for first 8 elements (cofactors) + float tmp[12]; // temp array for pairs + tmp[0] = src[10] * src[15]; + tmp[1] = src[11] * src[14]; + tmp[2] = src[9] * src[15]; + tmp[3] = src[11] * src[13]; + tmp[4] = src[9] * src[14]; + tmp[5] = src[10] * src[13]; + tmp[6] = src[8] * src[15]; + tmp[7] = src[11] * src[12]; + tmp[8] = src[8] * src[14]; + tmp[9] = src[10] * src[12]; + tmp[10] = src[8] * src[13]; + tmp[11] = src[9] * src[12]; + + // calculate first 8 elements (cofactors) + m16[0] = (tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7]) - (tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7]); + m16[1] = (tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7]) - (tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7]); + m16[2] = (tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7]) - (tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7]); + m16[3] = (tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6]) - (tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6]); + m16[4] = (tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3]) - (tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3]); + m16[5] = (tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3]) - (tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3]); + m16[6] = (tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3]) - (tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3]); + m16[7] = (tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2]) - (tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2]); + + // calculate pairs for second 8 elements (cofactors) + tmp[0] = src[2] * src[7]; + tmp[1] = src[3] * src[6]; + tmp[2] = src[1] * src[7]; + tmp[3] = src[3] * src[5]; + tmp[4] = src[1] * src[6]; + tmp[5] = src[2] * src[5]; + tmp[6] = src[0] * src[7]; + tmp[7] = src[3] * src[4]; + tmp[8] = src[0] * src[6]; + tmp[9] = src[2] * src[4]; + tmp[10] = src[0] * src[5]; + tmp[11] = src[1] * src[4]; + + // calculate second 8 elements (cofactors) + m16[8] = (tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15]) - (tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15]); + m16[9] = (tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15]) - (tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15]); + m16[10] = (tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15]) - (tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15]); + m16[11] = (tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14]) - (tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14]); + m16[12] = (tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9]) - (tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10]); + m16[13] = (tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10]) - (tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8]); + m16[14] = (tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8]) - (tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9]); + m16[15] = (tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9]) - (tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8]); + + // calculate determinant + det = src[0] * m16[0] + src[1] * m16[1] + src[2] * m16[2] + src[3] * m16[3]; + + // calculate matrix inverse + float invdet = 1 / det; + for (int j = 0; j < 16; ++j) + { + m16[j] *= invdet; + } + } + + return det; + } + + void matrix_t::RotationAxis(const vec_t& axis, float angle) + { + float length2 = axis.LengthSq(); + if (length2 < FLT_EPSILON) + { + SetToIdentity(); + return; + } + + vec_t n = axis * (1.f / sqrtf(length2)); + float s = sinf(angle); + float c = cosf(angle); + float k = 1.f - c; + + float xx = n.x * n.x * k + c; + float yy = n.y * n.y * k + c; + float zz = n.z * n.z * k + c; + float xy = n.x * n.y * k; + float yz = n.y * n.z * k; + float zx = n.z * n.x * k; + float xs = n.x * s; + float ys = n.y * s; + float zs = n.z * s; + + m[0][0] = xx; + m[0][1] = xy + zs; + m[0][2] = zx - ys; + m[0][3] = 0.f; + m[1][0] = xy - zs; + m[1][1] = yy; + m[1][2] = yz + xs; + m[1][3] = 0.f; + m[2][0] = zx + ys; + m[2][1] = yz - xs; + m[2][2] = zz; + m[2][3] = 0.f; + m[3][0] = 0.f; + m[3][1] = 0.f; + m[3][2] = 0.f; + m[3][3] = 1.f; + } + + /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + // + + enum MOVETYPE + { + MT_NONE, + MT_MOVE_X, + MT_MOVE_Y, + MT_MOVE_Z, + MT_MOVE_YZ, + MT_MOVE_ZX, + MT_MOVE_XY, + MT_MOVE_SCREEN, + MT_ROTATE_X, + MT_ROTATE_Y, + MT_ROTATE_Z, + MT_ROTATE_SCREEN, + MT_SCALE_X, + MT_SCALE_Y, + MT_SCALE_Z, + MT_SCALE_XYZ + }; + + static bool IsTranslateType(int type) + { + return type >= MT_MOVE_X && type <= MT_MOVE_SCREEN; + } + + static bool IsRotateType(int type) + { + return type >= MT_ROTATE_X && type <= MT_ROTATE_SCREEN; + } + + static bool IsScaleType(int type) + { + return type >= MT_SCALE_X && type <= MT_SCALE_XYZ; + } + + // Matches MT_MOVE_AB order + static const OPERATION TRANSLATE_PLANS[3] = { TRANSLATE_Y | TRANSLATE_Z, TRANSLATE_X | TRANSLATE_Z, TRANSLATE_X | TRANSLATE_Y }; + + Style::Style() + { + // default values + TranslationLineThickness = 3.0f; + TranslationLineArrowSize = 6.0f; + RotationLineThickness = 2.0f; + RotationOuterLineThickness = 3.0f; + ScaleLineThickness = 3.0f; + ScaleLineCircleSize = 6.0f; + HatchedAxisLineThickness = 6.0f; + CenterCircleSize = 6.0f; + + // initialize default colors + Colors[DIRECTION_X] = ImVec4(0.666f, 0.000f, 0.000f, 1.000f); + Colors[DIRECTION_Y] = ImVec4(0.000f, 0.666f, 0.000f, 1.000f); + Colors[DIRECTION_Z] = ImVec4(0.000f, 0.000f, 0.666f, 1.000f); + Colors[PLANE_X] = ImVec4(0.666f, 0.000f, 0.000f, 0.380f); + Colors[PLANE_Y] = ImVec4(0.000f, 0.666f, 0.000f, 0.380f); + Colors[PLANE_Z] = ImVec4(0.000f, 0.000f, 0.666f, 0.380f); + Colors[SELECTION] = ImVec4(1.000f, 0.500f, 0.062f, 0.541f); + Colors[INACTIVE] = ImVec4(0.600f, 0.600f, 0.600f, 0.600f); + Colors[TRANSLATION_LINE] = ImVec4(0.666f, 0.666f, 0.666f, 0.666f); + Colors[SCALE_LINE] = ImVec4(0.250f, 0.250f, 0.250f, 1.000f); + Colors[ROTATION_USING_BORDER] = ImVec4(1.000f, 0.500f, 0.062f, 1.000f); + Colors[ROTATION_USING_FILL] = ImVec4(1.000f, 0.500f, 0.062f, 0.500f); + Colors[HATCHED_AXIS_LINES] = ImVec4(0.000f, 0.000f, 0.000f, 0.500f); + Colors[TEXT] = ImVec4(1.000f, 1.000f, 1.000f, 1.000f); + Colors[TEXT_SHADOW] = ImVec4(0.000f, 0.000f, 0.000f, 1.000f); + } + + struct Context + { + Context() : mbUsing(false), mbEnable(true), mbUsingBounds(false) + { + } + + ImDrawList* mDrawList; + Style mStyle; + + MODE mMode; + matrix_t mViewMat; + matrix_t mProjectionMat; + matrix_t mModel; + matrix_t mModelLocal; // orthonormalized model + matrix_t mModelInverse; + matrix_t mModelSource; + matrix_t mModelSourceInverse; + matrix_t mMVP; + matrix_t mMVPLocal; // MVP with full model matrix whereas mMVP's model matrix might only be translation in case of World space edition + matrix_t mViewProjection; + + vec_t mModelScaleOrigin; + vec_t mCameraEye; + vec_t mCameraRight; + vec_t mCameraDir; + vec_t mCameraUp; + vec_t mRayOrigin; + vec_t mRayVector; + + float mRadiusSquareCenter; + ImVec2 mScreenSquareCenter; + ImVec2 mScreenSquareMin; + ImVec2 mScreenSquareMax; + + float mScreenFactor; + vec_t mRelativeOrigin; + + bool mbUsing; + bool mbEnable; + bool mbMouseOver; + bool mReversed; // reversed projection matrix + + // translation + vec_t mTranslationPlan; + vec_t mTranslationPlanOrigin; + vec_t mMatrixOrigin; + vec_t mTranslationLastDelta; + + // rotation + vec_t mRotationVectorSource; + float mRotationAngle; + float mRotationAngleOrigin; + //vec_t mWorldToLocalAxis; + + // scale + vec_t mScale; + vec_t mScaleValueOrigin; + vec_t mScaleLast; + float mSaveMousePosx; + + // save axis factor when using gizmo + bool mBelowAxisLimit[3]; + bool mBelowPlaneLimit[3]; + float mAxisFactor[3]; + + float mAxisLimit=0.0025f; + float mPlaneLimit=0.02f; + + // bounds stretching + vec_t mBoundsPivot; + vec_t mBoundsAnchor; + vec_t mBoundsPlan; + vec_t mBoundsLocalPivot; + int mBoundsBestAxis; + int mBoundsAxis[2]; + bool mbUsingBounds; + matrix_t mBoundsMatrix; + + // + int mCurrentOperation; + + float mX = 0.f; + float mY = 0.f; + float mWidth = 0.f; + float mHeight = 0.f; + float mXMax = 0.f; + float mYMax = 0.f; + float mDisplayRatio = 1.f; + + bool mIsOrthographic = false; + + int mActualID = -1; + int mEditingID = -1; + OPERATION mOperation = OPERATION(-1); + + bool mAllowAxisFlip = true; + float mGizmoSizeClipSpace = 0.1f; + }; + + static Context gContext; + + static const vec_t directionUnary[3] = { makeVect(1.f, 0.f, 0.f), makeVect(0.f, 1.f, 0.f), makeVect(0.f, 0.f, 1.f) }; + static const char* translationInfoMask[] = { "X : %5.3f", "Y : %5.3f", "Z : %5.3f", + "Y : %5.3f Z : %5.3f", "X : %5.3f Z : %5.3f", "X : %5.3f Y : %5.3f", + "X : %5.3f Y : %5.3f Z : %5.3f" }; + static const char* scaleInfoMask[] = { "X : %5.2f", "Y : %5.2f", "Z : %5.2f", "XYZ : %5.2f" }; + static const char* rotationInfoMask[] = { "X : %5.2f deg %5.2f rad", "Y : %5.2f deg %5.2f rad", "Z : %5.2f deg %5.2f rad", "Screen : %5.2f deg %5.2f rad" }; + static const int translationInfoIndex[] = { 0,0,0, 1,0,0, 2,0,0, 1,2,0, 0,2,0, 0,1,0, 0,1,2 }; + static const float quadMin = 0.5f; + static const float quadMax = 0.8f; + static const float quadUV[8] = { quadMin, quadMin, quadMin, quadMax, quadMax, quadMax, quadMax, quadMin }; + static const int halfCircleSegmentCount = 64; + static const float snapTension = 0.5f; + + /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + // + static int GetMoveType(OPERATION op, vec_t* gizmoHitProportion); + static int GetRotateType(OPERATION op); + static int GetScaleType(OPERATION op); + + Style& GetStyle() + { + return gContext.mStyle; + } + + static ImU32 GetColorU32(int idx) + { + IM_ASSERT(idx < COLOR::COUNT); + return ImGui::ColorConvertFloat4ToU32(gContext.mStyle.Colors[idx]); + } + + static ImVec2 worldToPos(const vec_t& worldPos, const matrix_t& mat, ImVec2 position = ImVec2(gContext.mX, gContext.mY), ImVec2 size = ImVec2(gContext.mWidth, gContext.mHeight)) + { + vec_t trans; + trans.TransformPoint(worldPos, mat); + trans *= 0.5f / trans.w; + trans += makeVect(0.5f, 0.5f); + trans.y = 1.f - trans.y; + trans.x *= size.x; + trans.y *= size.y; + trans.x += position.x; + trans.y += position.y; + return ImVec2(trans.x, trans.y); + } + + static void ComputeCameraRay(vec_t& rayOrigin, vec_t& rayDir, ImVec2 position = ImVec2(gContext.mX, gContext.mY), ImVec2 size = ImVec2(gContext.mWidth, gContext.mHeight)) + { + ImGuiIO& io = ImGui::GetIO(); + + matrix_t mViewProjInverse; + mViewProjInverse.Inverse(gContext.mViewMat * gContext.mProjectionMat); + + const float mox = ((io.MousePos.x - position.x) / size.x) * 2.f - 1.f; + const float moy = (1.f - ((io.MousePos.y - position.y) / size.y)) * 2.f - 1.f; + + const float zNear = gContext.mReversed ? (1.f - FLT_EPSILON) : 0.f; + const float zFar = gContext.mReversed ? 0.f : (1.f - FLT_EPSILON); + + rayOrigin.Transform(makeVect(mox, moy, zNear, 1.f), mViewProjInverse); + rayOrigin *= 1.f / rayOrigin.w; + vec_t rayEnd; + rayEnd.Transform(makeVect(mox, moy, zFar, 1.f), mViewProjInverse); + rayEnd *= 1.f / rayEnd.w; + rayDir = Normalized(rayEnd - rayOrigin); + } + + static float GetSegmentLengthClipSpace(const vec_t& start, const vec_t& end, const bool localCoordinates = false) + { + vec_t startOfSegment = start; + const matrix_t& mvp = localCoordinates ? gContext.mMVPLocal : gContext.mMVP; + startOfSegment.TransformPoint(mvp); + if (fabsf(startOfSegment.w) > FLT_EPSILON) // check for axis aligned with camera direction + { + startOfSegment *= 1.f / startOfSegment.w; + } + + vec_t endOfSegment = end; + endOfSegment.TransformPoint(mvp); + if (fabsf(endOfSegment.w) > FLT_EPSILON) // check for axis aligned with camera direction + { + endOfSegment *= 1.f / endOfSegment.w; + } + + vec_t clipSpaceAxis = endOfSegment - startOfSegment; + if (gContext.mDisplayRatio < 1.0) + clipSpaceAxis.x *= gContext.mDisplayRatio; + else + clipSpaceAxis.y /= gContext.mDisplayRatio; + float segmentLengthInClipSpace = sqrtf(clipSpaceAxis.x * clipSpaceAxis.x + clipSpaceAxis.y * clipSpaceAxis.y); + return segmentLengthInClipSpace; + } + + static float GetParallelogram(const vec_t& ptO, const vec_t& ptA, const vec_t& ptB) + { + vec_t pts[] = { ptO, ptA, ptB }; + for (unsigned int i = 0; i < 3; i++) + { + pts[i].TransformPoint(gContext.mMVP); + if (fabsf(pts[i].w) > FLT_EPSILON) // check for axis aligned with camera direction + { + pts[i] *= 1.f / pts[i].w; + } + } + vec_t segA = pts[1] - pts[0]; + vec_t segB = pts[2] - pts[0]; + segA.y /= gContext.mDisplayRatio; + segB.y /= gContext.mDisplayRatio; + vec_t segAOrtho = makeVect(-segA.y, segA.x); + segAOrtho.Normalize(); + float dt = segAOrtho.Dot3(segB); + float surface = sqrtf(segA.x * segA.x + segA.y * segA.y) * fabsf(dt); + return surface; + } + + inline vec_t PointOnSegment(const vec_t& point, const vec_t& vertPos1, const vec_t& vertPos2) + { + vec_t c = point - vertPos1; + vec_t V; + + V.Normalize(vertPos2 - vertPos1); + float d = (vertPos2 - vertPos1).Length(); + float t = V.Dot3(c); + + if (t < 0.f) + { + return vertPos1; + } + + if (t > d) + { + return vertPos2; + } + + return vertPos1 + V * t; + } + + static float IntersectRayPlane(const vec_t& rOrigin, const vec_t& rVector, const vec_t& plan) + { + const float numer = plan.Dot3(rOrigin) - plan.w; + const float denom = plan.Dot3(rVector); + + if (fabsf(denom) < FLT_EPSILON) // normal is orthogonal to vector, cant intersect + { + return -1.0f; + } + + return -(numer / denom); + } + + static float DistanceToPlane(const vec_t& point, const vec_t& plan) + { + return plan.Dot3(point) + plan.w; + } + + static bool IsInContextRect(ImVec2 p) + { + return IsWithin(p.x, gContext.mX, gContext.mXMax) && IsWithin(p.y, gContext.mY, gContext.mYMax); + } + + static bool IsHoveringWindow() + { + ImGuiContext& g = *ImGui::GetCurrentContext(); + ImGuiWindow* window = ImGui::FindWindowByName(gContext.mDrawList->_OwnerName); + if (g.HoveredWindow == window) // Mouse hovering drawlist window + return true; + if (g.HoveredWindow != NULL) // Any other window is hovered + return false; + if (ImGui::IsMouseHoveringRect(window->InnerRect.Min, window->InnerRect.Max, false)) // Hovering drawlist window rect, while no other window is hovered (for _NoInputs windows) + return true; + return false; + } + + void SetRect(float x, float y, float width, float height) + { + gContext.mX = x; + gContext.mY = y; + gContext.mWidth = width; + gContext.mHeight = height; + gContext.mXMax = gContext.mX + gContext.mWidth; + gContext.mYMax = gContext.mY + gContext.mXMax; + gContext.mDisplayRatio = width / height; + } + + void SetOrthographic(bool isOrthographic) + { + gContext.mIsOrthographic = isOrthographic; + } + + void SetDrawlist(ImDrawList* drawlist) + { + gContext.mDrawList = drawlist ? drawlist : ImGui::GetWindowDrawList(); + } + + void SetImGuiContext(ImGuiContext* ctx) + { + ImGui::SetCurrentContext(ctx); + } + + void BeginFrame() + { + const ImU32 flags = ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoInputs | ImGuiWindowFlags_NoSavedSettings | ImGuiWindowFlags_NoFocusOnAppearing | ImGuiWindowFlags_NoBringToFrontOnFocus; + +#ifdef IMGUI_HAS_VIEWPORT + ImGui::SetNextWindowSize(ImGui::GetMainViewport()->Size); + ImGui::SetNextWindowPos(ImGui::GetMainViewport()->Pos); +#else + ImGuiIO& io = ImGui::GetIO(); + ImGui::SetNextWindowSize(io.DisplaySize); + ImGui::SetNextWindowPos(ImVec2(0, 0)); +#endif + + ImGui::PushStyleColor(ImGuiCol_WindowBg, 0); + ImGui::PushStyleColor(ImGuiCol_Border, 0); + ImGui::PushStyleVar(ImGuiStyleVar_WindowRounding, 0.0f); + + ImGui::Begin("gizmo", NULL, flags); + gContext.mDrawList = ImGui::GetWindowDrawList(); + ImGui::End(); + ImGui::PopStyleVar(); + ImGui::PopStyleColor(2); + } + + bool IsUsing() + { + return (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) || gContext.mbUsingBounds; + } + + bool IsUsingAny() + { + return gContext.mbUsing || gContext.mbUsingBounds; + } + + bool IsOver() + { + return (Intersects(gContext.mOperation, TRANSLATE) && GetMoveType(gContext.mOperation, NULL) != MT_NONE) || + (Intersects(gContext.mOperation, ROTATE) && GetRotateType(gContext.mOperation) != MT_NONE) || + (Intersects(gContext.mOperation, SCALE) && GetScaleType(gContext.mOperation) != MT_NONE) || IsUsing(); + } + + bool IsOver(OPERATION op) + { + if(IsUsing()) + { + return true; + } + if(Intersects(op, SCALE) && GetScaleType(op) != MT_NONE) + { + return true; + } + if(Intersects(op, ROTATE) && GetRotateType(op) != MT_NONE) + { + return true; + } + if(Intersects(op, TRANSLATE) && GetMoveType(op, NULL) != MT_NONE) + { + return true; + } + return false; + } + + void Enable(bool enable) + { + gContext.mbEnable = enable; + if (!enable) + { + gContext.mbUsing = false; + gContext.mbUsingBounds = false; + } + } + + static void ComputeContext(const float* view, const float* projection, float* matrix, MODE mode) + { + gContext.mMode = mode; + gContext.mViewMat = *(matrix_t*)view; + gContext.mProjectionMat = *(matrix_t*)projection; + gContext.mbMouseOver = IsHoveringWindow(); + + gContext.mModelLocal = *(matrix_t*)matrix; + gContext.mModelLocal.OrthoNormalize(); + + if (mode == LOCAL) + { + gContext.mModel = gContext.mModelLocal; + } + else + { + gContext.mModel.Translation(((matrix_t*)matrix)->v.position); + } + gContext.mModelSource = *(matrix_t*)matrix; + gContext.mModelScaleOrigin.Set(gContext.mModelSource.v.right.Length(), gContext.mModelSource.v.up.Length(), gContext.mModelSource.v.dir.Length()); + + gContext.mModelInverse.Inverse(gContext.mModel); + gContext.mModelSourceInverse.Inverse(gContext.mModelSource); + gContext.mViewProjection = gContext.mViewMat * gContext.mProjectionMat; + gContext.mMVP = gContext.mModel * gContext.mViewProjection; + gContext.mMVPLocal = gContext.mModelLocal * gContext.mViewProjection; + + matrix_t viewInverse; + viewInverse.Inverse(gContext.mViewMat); + gContext.mCameraDir = viewInverse.v.dir; + gContext.mCameraEye = viewInverse.v.position; + gContext.mCameraRight = viewInverse.v.right; + gContext.mCameraUp = viewInverse.v.up; + + // projection reverse + vec_t nearPos, farPos; + nearPos.Transform(makeVect(0, 0, 1.f, 1.f), gContext.mProjectionMat); + farPos.Transform(makeVect(0, 0, 2.f, 1.f), gContext.mProjectionMat); + + gContext.mReversed = (nearPos.z/nearPos.w) > (farPos.z / farPos.w); + + // compute scale from the size of camera right vector projected on screen at the matrix position + vec_t pointRight = viewInverse.v.right; + pointRight.TransformPoint(gContext.mViewProjection); + gContext.mScreenFactor = gContext.mGizmoSizeClipSpace / (pointRight.x / pointRight.w - gContext.mMVP.v.position.x / gContext.mMVP.v.position.w); + + vec_t rightViewInverse = viewInverse.v.right; + rightViewInverse.TransformVector(gContext.mModelInverse); + float rightLength = GetSegmentLengthClipSpace(makeVect(0.f, 0.f), rightViewInverse); + gContext.mScreenFactor = gContext.mGizmoSizeClipSpace / rightLength; + + ImVec2 centerSSpace = worldToPos(makeVect(0.f, 0.f), gContext.mMVP); + gContext.mScreenSquareCenter = centerSSpace; + gContext.mScreenSquareMin = ImVec2(centerSSpace.x - 10.f, centerSSpace.y - 10.f); + gContext.mScreenSquareMax = ImVec2(centerSSpace.x + 10.f, centerSSpace.y + 10.f); + + ComputeCameraRay(gContext.mRayOrigin, gContext.mRayVector); + } + + static void ComputeColors(ImU32* colors, int type, OPERATION operation) + { + if (gContext.mbEnable) + { + ImU32 selectionColor = GetColorU32(SELECTION); + + switch (operation) + { + case TRANSLATE: + colors[0] = (type == MT_MOVE_SCREEN) ? selectionColor : IM_COL32_WHITE; + for (int i = 0; i < 3; i++) + { + colors[i + 1] = (type == (int)(MT_MOVE_X + i)) ? selectionColor : GetColorU32(DIRECTION_X + i); + colors[i + 4] = (type == (int)(MT_MOVE_YZ + i)) ? selectionColor : GetColorU32(PLANE_X + i); + colors[i + 4] = (type == MT_MOVE_SCREEN) ? selectionColor : colors[i + 4]; + } + break; + case ROTATE: + colors[0] = (type == MT_ROTATE_SCREEN) ? selectionColor : IM_COL32_WHITE; + for (int i = 0; i < 3; i++) + { + colors[i + 1] = (type == (int)(MT_ROTATE_X + i)) ? selectionColor : GetColorU32(DIRECTION_X + i); + } + break; + case SCALEU: + case SCALE: + colors[0] = (type == MT_SCALE_XYZ) ? selectionColor : IM_COL32_WHITE; + for (int i = 0; i < 3; i++) + { + colors[i + 1] = (type == (int)(MT_SCALE_X + i)) ? selectionColor : GetColorU32(DIRECTION_X + i); + } + break; + // note: this internal function is only called with three possible values for operation + default: + break; + } + } + else + { + ImU32 inactiveColor = GetColorU32(INACTIVE); + for (int i = 0; i < 7; i++) + { + colors[i] = inactiveColor; + } + } + } + + static void ComputeTripodAxisAndVisibility(const int axisIndex, vec_t& dirAxis, vec_t& dirPlaneX, vec_t& dirPlaneY, bool& belowAxisLimit, bool& belowPlaneLimit, const bool localCoordinates = false) + { + dirAxis = directionUnary[axisIndex]; + dirPlaneX = directionUnary[(axisIndex + 1) % 3]; + dirPlaneY = directionUnary[(axisIndex + 2) % 3]; + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) + { + // when using, use stored factors so the gizmo doesn't flip when we translate + belowAxisLimit = gContext.mBelowAxisLimit[axisIndex]; + belowPlaneLimit = gContext.mBelowPlaneLimit[axisIndex]; + + dirAxis *= gContext.mAxisFactor[axisIndex]; + dirPlaneX *= gContext.mAxisFactor[(axisIndex + 1) % 3]; + dirPlaneY *= gContext.mAxisFactor[(axisIndex + 2) % 3]; + } + else + { + // new method + float lenDir = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), dirAxis, localCoordinates); + float lenDirMinus = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), -dirAxis, localCoordinates); + + float lenDirPlaneX = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), dirPlaneX, localCoordinates); + float lenDirMinusPlaneX = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), -dirPlaneX, localCoordinates); + + float lenDirPlaneY = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), dirPlaneY, localCoordinates); + float lenDirMinusPlaneY = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), -dirPlaneY, localCoordinates); + + // For readability + bool & allowFlip = gContext.mAllowAxisFlip; + float mulAxis = (allowFlip && lenDir < lenDirMinus&& fabsf(lenDir - lenDirMinus) > FLT_EPSILON) ? -1.f : 1.f; + float mulAxisX = (allowFlip && lenDirPlaneX < lenDirMinusPlaneX&& fabsf(lenDirPlaneX - lenDirMinusPlaneX) > FLT_EPSILON) ? -1.f : 1.f; + float mulAxisY = (allowFlip && lenDirPlaneY < lenDirMinusPlaneY&& fabsf(lenDirPlaneY - lenDirMinusPlaneY) > FLT_EPSILON) ? -1.f : 1.f; + dirAxis *= mulAxis; + dirPlaneX *= mulAxisX; + dirPlaneY *= mulAxisY; + + // for axis + float axisLengthInClipSpace = GetSegmentLengthClipSpace(makeVect(0.f, 0.f, 0.f), dirAxis * gContext.mScreenFactor, localCoordinates); + + float paraSurf = GetParallelogram(makeVect(0.f, 0.f, 0.f), dirPlaneX * gContext.mScreenFactor, dirPlaneY * gContext.mScreenFactor); + belowPlaneLimit = (paraSurf > gContext.mAxisLimit); + belowAxisLimit = (axisLengthInClipSpace > gContext.mPlaneLimit); + + // and store values + gContext.mAxisFactor[axisIndex] = mulAxis; + gContext.mAxisFactor[(axisIndex + 1) % 3] = mulAxisX; + gContext.mAxisFactor[(axisIndex + 2) % 3] = mulAxisY; + gContext.mBelowAxisLimit[axisIndex] = belowAxisLimit; + gContext.mBelowPlaneLimit[axisIndex] = belowPlaneLimit; + } + } + + static void ComputeSnap(float* value, float snap) + { + if (snap <= FLT_EPSILON) + { + return; + } + + float modulo = fmodf(*value, snap); + float moduloRatio = fabsf(modulo) / snap; + if (moduloRatio < snapTension) + { + *value -= modulo; + } + else if (moduloRatio > (1.f - snapTension)) + { + *value = *value - modulo + snap * ((*value < 0.f) ? -1.f : 1.f); + } + } + static void ComputeSnap(vec_t& value, const float* snap) + { + for (int i = 0; i < 3; i++) + { + ComputeSnap(&value[i], snap[i]); + } + } + + static float ComputeAngleOnPlan() + { + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan); + vec_t localPos = Normalized(gContext.mRayOrigin + gContext.mRayVector * len - gContext.mModel.v.position); + + vec_t perpendicularVector; + perpendicularVector.Cross(gContext.mRotationVectorSource, gContext.mTranslationPlan); + perpendicularVector.Normalize(); + float acosAngle = Clamp(Dot(localPos, gContext.mRotationVectorSource), -1.f, 1.f); + float angle = acosf(acosAngle); + angle *= (Dot(localPos, perpendicularVector) < 0.f) ? 1.f : -1.f; + return angle; + } + + static void DrawRotationGizmo(OPERATION op, int type) + { + if(!Intersects(op, ROTATE)) + { + return; + } + ImDrawList* drawList = gContext.mDrawList; + + // colors + ImU32 colors[7]; + ComputeColors(colors, type, ROTATE); + + vec_t cameraToModelNormalized; + if (gContext.mIsOrthographic) + { + matrix_t viewInverse; + viewInverse.Inverse(*(matrix_t*)&gContext.mViewMat); + cameraToModelNormalized = -viewInverse.v.dir; + } + else + { + cameraToModelNormalized = Normalized(gContext.mModel.v.position - gContext.mCameraEye); + } + + cameraToModelNormalized.TransformVector(gContext.mModelInverse); + + gContext.mRadiusSquareCenter = screenRotateSize * gContext.mHeight; + + bool hasRSC = Intersects(op, ROTATE_SCREEN); + for (int axis = 0; axis < 3; axis++) + { + if(!Intersects(op, static_cast(ROTATE_Z >> axis))) + { + continue; + } + const bool usingAxis = (gContext.mbUsing && type == MT_ROTATE_Z - axis); + const int circleMul = (hasRSC && !usingAxis ) ? 1 : 2; + + ImVec2* circlePos = (ImVec2*)alloca(sizeof(ImVec2) * (circleMul * halfCircleSegmentCount + 1)); + + float angleStart = atan2f(cameraToModelNormalized[(4 - axis) % 3], cameraToModelNormalized[(3 - axis) % 3]) + ZPI * 0.5f; + + for (int i = 0; i < circleMul * halfCircleSegmentCount + 1; i++) + { + float ng = angleStart + (float)circleMul * ZPI * ((float)i / (float)(circleMul * halfCircleSegmentCount)); + vec_t axisPos = makeVect(cosf(ng), sinf(ng), 0.f); + vec_t pos = makeVect(axisPos[axis], axisPos[(axis + 1) % 3], axisPos[(axis + 2) % 3]) * gContext.mScreenFactor * rotationDisplayFactor; + circlePos[i] = worldToPos(pos, gContext.mMVP); + } + if (!gContext.mbUsing || usingAxis) + { + drawList->AddPolyline(circlePos, circleMul* halfCircleSegmentCount + 1, colors[3 - axis], false, gContext.mStyle.RotationLineThickness); + } + + float radiusAxis = sqrtf((ImLengthSqr(worldToPos(gContext.mModel.v.position, gContext.mViewProjection) - circlePos[0]))); + if (radiusAxis > gContext.mRadiusSquareCenter) + { + gContext.mRadiusSquareCenter = radiusAxis; + } + } + if(hasRSC && (!gContext.mbUsing || type == MT_ROTATE_SCREEN)) + { + drawList->AddCircle(worldToPos(gContext.mModel.v.position, gContext.mViewProjection), gContext.mRadiusSquareCenter, colors[0], 64, gContext.mStyle.RotationOuterLineThickness); + } + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsRotateType(type)) + { + ImVec2 circlePos[halfCircleSegmentCount + 1]; + + circlePos[0] = worldToPos(gContext.mModel.v.position, gContext.mViewProjection); + for (unsigned int i = 1; i < halfCircleSegmentCount + 1; i++) + { + float ng = gContext.mRotationAngle * ((float)(i - 1) / (float)(halfCircleSegmentCount - 1)); + matrix_t rotateVectorMatrix; + rotateVectorMatrix.RotationAxis(gContext.mTranslationPlan, ng); + vec_t pos; + pos.TransformPoint(gContext.mRotationVectorSource, rotateVectorMatrix); + pos *= gContext.mScreenFactor * rotationDisplayFactor; + circlePos[i] = worldToPos(pos + gContext.mModel.v.position, gContext.mViewProjection); + } + drawList->AddConvexPolyFilled(circlePos, halfCircleSegmentCount + 1, GetColorU32(ROTATION_USING_FILL)); + drawList->AddPolyline(circlePos, halfCircleSegmentCount + 1, GetColorU32(ROTATION_USING_BORDER), true, gContext.mStyle.RotationLineThickness); + + ImVec2 destinationPosOnScreen = circlePos[1]; + char tmps[512]; + ImFormatString(tmps, sizeof(tmps), rotationInfoMask[type - MT_ROTATE_X], (gContext.mRotationAngle / ZPI) * 180.f, gContext.mRotationAngle); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), GetColorU32(TEXT_SHADOW), tmps); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), GetColorU32(TEXT), tmps); + } + } + + static void DrawHatchedAxis(const vec_t& axis) + { + if (gContext.mStyle.HatchedAxisLineThickness <= 0.0f) + { + return; + } + + for (int j = 1; j < 10; j++) + { + ImVec2 baseSSpace2 = worldToPos(axis * 0.05f * (float)(j * 2) * gContext.mScreenFactor, gContext.mMVP); + ImVec2 worldDirSSpace2 = worldToPos(axis * 0.05f * (float)(j * 2 + 1) * gContext.mScreenFactor, gContext.mMVP); + gContext.mDrawList->AddLine(baseSSpace2, worldDirSSpace2, GetColorU32(HATCHED_AXIS_LINES), gContext.mStyle.HatchedAxisLineThickness); + } + } + + static void DrawScaleGizmo(OPERATION op, int type) + { + ImDrawList* drawList = gContext.mDrawList; + + if(!Intersects(op, SCALE)) + { + return; + } + + // colors + ImU32 colors[7]; + ComputeColors(colors, type, SCALE); + + // draw + vec_t scaleDisplay = { 1.f, 1.f, 1.f, 1.f }; + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) + { + scaleDisplay = gContext.mScale; + } + + for (int i = 0; i < 3; i++) + { + if(!Intersects(op, static_cast(SCALE_X << i))) + { + continue; + } + const bool usingAxis = (gContext.mbUsing && type == MT_SCALE_X + i); + if (!gContext.mbUsing || usingAxis) + { + vec_t dirPlaneX, dirPlaneY, dirAxis; + bool belowAxisLimit, belowPlaneLimit; + ComputeTripodAxisAndVisibility(i, dirAxis, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit, true); + + // draw axis + if (belowAxisLimit) + { + bool hasTranslateOnAxis = Contains(op, static_cast(TRANSLATE_X << i)); + float markerScale = hasTranslateOnAxis ? 1.4f : 1.0f; + ImVec2 baseSSpace = worldToPos(dirAxis * 0.1f * gContext.mScreenFactor, gContext.mMVP); + ImVec2 worldDirSSpaceNoScale = worldToPos(dirAxis * markerScale * gContext.mScreenFactor, gContext.mMVP); + ImVec2 worldDirSSpace = worldToPos((dirAxis * markerScale * scaleDisplay[i]) * gContext.mScreenFactor, gContext.mMVP); + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) + { + ImU32 scaleLineColor = GetColorU32(SCALE_LINE); + drawList->AddLine(baseSSpace, worldDirSSpaceNoScale, scaleLineColor, gContext.mStyle.ScaleLineThickness); + drawList->AddCircleFilled(worldDirSSpaceNoScale, gContext.mStyle.ScaleLineCircleSize, scaleLineColor); + } + + if (!hasTranslateOnAxis || gContext.mbUsing) + { + drawList->AddLine(baseSSpace, worldDirSSpace, colors[i + 1], gContext.mStyle.ScaleLineThickness); + } + drawList->AddCircleFilled(worldDirSSpace, gContext.mStyle.ScaleLineCircleSize, colors[i + 1]); + + if (gContext.mAxisFactor[i] < 0.f) + { + DrawHatchedAxis(dirAxis * scaleDisplay[i]); + } + } + } + } + + // draw screen cirle + drawList->AddCircleFilled(gContext.mScreenSquareCenter, gContext.mStyle.CenterCircleSize, colors[0], 32); + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsScaleType(type)) + { + //ImVec2 sourcePosOnScreen = worldToPos(gContext.mMatrixOrigin, gContext.mViewProjection); + ImVec2 destinationPosOnScreen = worldToPos(gContext.mModel.v.position, gContext.mViewProjection); + /*vec_t dif(destinationPosOnScreen.x - sourcePosOnScreen.x, destinationPosOnScreen.y - sourcePosOnScreen.y); + dif.Normalize(); + dif *= 5.f; + drawList->AddCircle(sourcePosOnScreen, 6.f, translationLineColor); + drawList->AddCircle(destinationPosOnScreen, 6.f, translationLineColor); + drawList->AddLine(ImVec2(sourcePosOnScreen.x + dif.x, sourcePosOnScreen.y + dif.y), ImVec2(destinationPosOnScreen.x - dif.x, destinationPosOnScreen.y - dif.y), translationLineColor, 2.f); + */ + char tmps[512]; + //vec_t deltaInfo = gContext.mModel.v.position - gContext.mMatrixOrigin; + int componentInfoIndex = (type - MT_SCALE_X) * 3; + ImFormatString(tmps, sizeof(tmps), scaleInfoMask[type - MT_SCALE_X], scaleDisplay[translationInfoIndex[componentInfoIndex]]); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), GetColorU32(TEXT_SHADOW), tmps); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), GetColorU32(TEXT), tmps); + } + } + + + static void DrawScaleUniveralGizmo(OPERATION op, int type) + { + ImDrawList* drawList = gContext.mDrawList; + + if (!Intersects(op, SCALEU)) + { + return; + } + + // colors + ImU32 colors[7]; + ComputeColors(colors, type, SCALEU); + + // draw + vec_t scaleDisplay = { 1.f, 1.f, 1.f, 1.f }; + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) + { + scaleDisplay = gContext.mScale; + } + + for (int i = 0; i < 3; i++) + { + if (!Intersects(op, static_cast(SCALE_XU << i))) + { + continue; + } + const bool usingAxis = (gContext.mbUsing && type == MT_SCALE_X + i); + if (!gContext.mbUsing || usingAxis) + { + vec_t dirPlaneX, dirPlaneY, dirAxis; + bool belowAxisLimit, belowPlaneLimit; + ComputeTripodAxisAndVisibility(i, dirAxis, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit, true); + + // draw axis + if (belowAxisLimit) + { + bool hasTranslateOnAxis = Contains(op, static_cast(TRANSLATE_X << i)); + float markerScale = hasTranslateOnAxis ? 1.4f : 1.0f; + //ImVec2 baseSSpace = worldToPos(dirAxis * 0.1f * gContext.mScreenFactor, gContext.mMVPLocal); + //ImVec2 worldDirSSpaceNoScale = worldToPos(dirAxis * markerScale * gContext.mScreenFactor, gContext.mMVP); + ImVec2 worldDirSSpace = worldToPos((dirAxis * markerScale * scaleDisplay[i]) * gContext.mScreenFactor, gContext.mMVPLocal); + +#if 0 + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) + { + drawList->AddLine(baseSSpace, worldDirSSpaceNoScale, IM_COL32(0x40, 0x40, 0x40, 0xFF), 3.f); + drawList->AddCircleFilled(worldDirSSpaceNoScale, 6.f, IM_COL32(0x40, 0x40, 0x40, 0xFF)); + } + /* + if (!hasTranslateOnAxis || gContext.mbUsing) + { + drawList->AddLine(baseSSpace, worldDirSSpace, colors[i + 1], 3.f); + } + */ +#endif + drawList->AddCircleFilled(worldDirSSpace, 12.f, colors[i + 1]); + } + } + } + + // draw screen cirle + drawList->AddCircle(gContext.mScreenSquareCenter, 20.f, colors[0], 32, gContext.mStyle.CenterCircleSize); + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsScaleType(type)) + { + //ImVec2 sourcePosOnScreen = worldToPos(gContext.mMatrixOrigin, gContext.mViewProjection); + ImVec2 destinationPosOnScreen = worldToPos(gContext.mModel.v.position, gContext.mViewProjection); + /*vec_t dif(destinationPosOnScreen.x - sourcePosOnScreen.x, destinationPosOnScreen.y - sourcePosOnScreen.y); + dif.Normalize(); + dif *= 5.f; + drawList->AddCircle(sourcePosOnScreen, 6.f, translationLineColor); + drawList->AddCircle(destinationPosOnScreen, 6.f, translationLineColor); + drawList->AddLine(ImVec2(sourcePosOnScreen.x + dif.x, sourcePosOnScreen.y + dif.y), ImVec2(destinationPosOnScreen.x - dif.x, destinationPosOnScreen.y - dif.y), translationLineColor, 2.f); + */ + char tmps[512]; + //vec_t deltaInfo = gContext.mModel.v.position - gContext.mMatrixOrigin; + int componentInfoIndex = (type - MT_SCALE_X) * 3; + ImFormatString(tmps, sizeof(tmps), scaleInfoMask[type - MT_SCALE_X], scaleDisplay[translationInfoIndex[componentInfoIndex]]); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), GetColorU32(TEXT_SHADOW), tmps); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), GetColorU32(TEXT), tmps); + } + } + + static void DrawTranslationGizmo(OPERATION op, int type) + { + ImDrawList* drawList = gContext.mDrawList; + if (!drawList) + { + return; + } + + if(!Intersects(op, TRANSLATE)) + { + return; + } + + // colors + ImU32 colors[7]; + ComputeColors(colors, type, TRANSLATE); + + const ImVec2 origin = worldToPos(gContext.mModel.v.position, gContext.mViewProjection); + + // draw + bool belowAxisLimit = false; + bool belowPlaneLimit = false; + for (int i = 0; i < 3; ++i) + { + vec_t dirPlaneX, dirPlaneY, dirAxis; + ComputeTripodAxisAndVisibility(i, dirAxis, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit); + + if (!gContext.mbUsing || (gContext.mbUsing && type == MT_MOVE_X + i)) + { + // draw axis + if (belowAxisLimit && Intersects(op, static_cast(TRANSLATE_X << i))) + { + ImVec2 baseSSpace = worldToPos(dirAxis * 0.1f * gContext.mScreenFactor, gContext.mMVP); + ImVec2 worldDirSSpace = worldToPos(dirAxis * gContext.mScreenFactor, gContext.mMVP); + + drawList->AddLine(baseSSpace, worldDirSSpace, colors[i + 1], gContext.mStyle.TranslationLineThickness); + + // Arrow head begin + ImVec2 dir(origin - worldDirSSpace); + + float d = sqrtf(ImLengthSqr(dir)); + dir /= d; // Normalize + dir *= gContext.mStyle.TranslationLineArrowSize; + + ImVec2 ortogonalDir(dir.y, -dir.x); // Perpendicular vector + ImVec2 a(worldDirSSpace + dir); + drawList->AddTriangleFilled(worldDirSSpace - dir, a + ortogonalDir, a - ortogonalDir, colors[i + 1]); + // Arrow head end + + if (gContext.mAxisFactor[i] < 0.f) + { + DrawHatchedAxis(dirAxis); + } + } + } + // draw plane + if (!gContext.mbUsing || (gContext.mbUsing && type == MT_MOVE_YZ + i)) + { + if (belowPlaneLimit && Contains(op, TRANSLATE_PLANS[i])) + { + ImVec2 screenQuadPts[4]; + for (int j = 0; j < 4; ++j) + { + vec_t cornerWorldPos = (dirPlaneX * quadUV[j * 2] + dirPlaneY * quadUV[j * 2 + 1]) * gContext.mScreenFactor; + screenQuadPts[j] = worldToPos(cornerWorldPos, gContext.mMVP); + } + drawList->AddPolyline(screenQuadPts, 4, GetColorU32(DIRECTION_X + i), true, 1.0f); + drawList->AddConvexPolyFilled(screenQuadPts, 4, colors[i + 4]); + } + } + } + + drawList->AddCircleFilled(gContext.mScreenSquareCenter, gContext.mStyle.CenterCircleSize, colors[0], 32); + + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsTranslateType(type)) + { + ImU32 translationLineColor = GetColorU32(TRANSLATION_LINE); + + ImVec2 sourcePosOnScreen = worldToPos(gContext.mMatrixOrigin, gContext.mViewProjection); + ImVec2 destinationPosOnScreen = worldToPos(gContext.mModel.v.position, gContext.mViewProjection); + vec_t dif = { destinationPosOnScreen.x - sourcePosOnScreen.x, destinationPosOnScreen.y - sourcePosOnScreen.y, 0.f, 0.f }; + dif.Normalize(); + dif *= 5.f; + drawList->AddCircle(sourcePosOnScreen, 6.f, translationLineColor); + drawList->AddCircle(destinationPosOnScreen, 6.f, translationLineColor); + drawList->AddLine(ImVec2(sourcePosOnScreen.x + dif.x, sourcePosOnScreen.y + dif.y), ImVec2(destinationPosOnScreen.x - dif.x, destinationPosOnScreen.y - dif.y), translationLineColor, 2.f); + + char tmps[512]; + vec_t deltaInfo = gContext.mModel.v.position - gContext.mMatrixOrigin; + int componentInfoIndex = (type - MT_MOVE_X) * 3; + ImFormatString(tmps, sizeof(tmps), translationInfoMask[type - MT_MOVE_X], deltaInfo[translationInfoIndex[componentInfoIndex]], deltaInfo[translationInfoIndex[componentInfoIndex + 1]], deltaInfo[translationInfoIndex[componentInfoIndex + 2]]); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), GetColorU32(TEXT_SHADOW), tmps); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), GetColorU32(TEXT), tmps); + } + } + + static bool CanActivate() + { + if (ImGui::IsMouseClicked(0) && !ImGui::IsAnyItemHovered() && !ImGui::IsAnyItemActive()) + { + return true; + } + return false; + } + + static void HandleAndDrawLocalBounds(const float* bounds, matrix_t* matrix, const float* snapValues, OPERATION operation) + { + ImGuiIO& io = ImGui::GetIO(); + ImDrawList* drawList = gContext.mDrawList; + + // compute best projection axis + vec_t axesWorldDirections[3]; + vec_t bestAxisWorldDirection = { 0.0f, 0.0f, 0.0f, 0.0f }; + int axes[3]; + unsigned int numAxes = 1; + axes[0] = gContext.mBoundsBestAxis; + int bestAxis = axes[0]; + if (!gContext.mbUsingBounds) + { + numAxes = 0; + float bestDot = 0.f; + for (int i = 0; i < 3; i++) + { + vec_t dirPlaneNormalWorld; + dirPlaneNormalWorld.TransformVector(directionUnary[i], gContext.mModelSource); + dirPlaneNormalWorld.Normalize(); + + float dt = fabsf(Dot(Normalized(gContext.mCameraEye - gContext.mModelSource.v.position), dirPlaneNormalWorld)); + if (dt >= bestDot) + { + bestDot = dt; + bestAxis = i; + bestAxisWorldDirection = dirPlaneNormalWorld; + } + + if (dt >= 0.1f) + { + axes[numAxes] = i; + axesWorldDirections[numAxes] = dirPlaneNormalWorld; + ++numAxes; + } + } + } + + if (numAxes == 0) + { + axes[0] = bestAxis; + axesWorldDirections[0] = bestAxisWorldDirection; + numAxes = 1; + } + + else if (bestAxis != axes[0]) + { + unsigned int bestIndex = 0; + for (unsigned int i = 0; i < numAxes; i++) + { + if (axes[i] == bestAxis) + { + bestIndex = i; + break; + } + } + int tempAxis = axes[0]; + axes[0] = axes[bestIndex]; + axes[bestIndex] = tempAxis; + vec_t tempDirection = axesWorldDirections[0]; + axesWorldDirections[0] = axesWorldDirections[bestIndex]; + axesWorldDirections[bestIndex] = tempDirection; + } + + for (unsigned int axisIndex = 0; axisIndex < numAxes; ++axisIndex) + { + bestAxis = axes[axisIndex]; + bestAxisWorldDirection = axesWorldDirections[axisIndex]; + + // corners + vec_t aabb[4]; + + int secondAxis = (bestAxis + 1) % 3; + int thirdAxis = (bestAxis + 2) % 3; + + for (int i = 0; i < 4; i++) + { + aabb[i][3] = aabb[i][bestAxis] = 0.f; + aabb[i][secondAxis] = bounds[secondAxis + 3 * (i >> 1)]; + aabb[i][thirdAxis] = bounds[thirdAxis + 3 * ((i >> 1) ^ (i & 1))]; + } + + // draw bounds + unsigned int anchorAlpha = gContext.mbEnable ? IM_COL32_BLACK : IM_COL32(0, 0, 0, 0x80); + + matrix_t boundsMVP = gContext.mModelSource * gContext.mViewProjection; + for (int i = 0; i < 4; i++) + { + ImVec2 worldBound1 = worldToPos(aabb[i], boundsMVP); + ImVec2 worldBound2 = worldToPos(aabb[(i + 1) % 4], boundsMVP); + if (!IsInContextRect(worldBound1) || !IsInContextRect(worldBound2)) + { + continue; + } + float boundDistance = sqrtf(ImLengthSqr(worldBound1 - worldBound2)); + int stepCount = (int)(boundDistance / 10.f); + stepCount = min(stepCount, 1000); + for (int j = 0; j < stepCount; j++) + { + float stepLength = 1.f / (float)stepCount; + float t1 = (float)j * stepLength; + float t2 = (float)j * stepLength + stepLength * 0.5f; + ImVec2 worldBoundSS1 = ImLerp(worldBound1, worldBound2, ImVec2(t1, t1)); + ImVec2 worldBoundSS2 = ImLerp(worldBound1, worldBound2, ImVec2(t2, t2)); + //drawList->AddLine(worldBoundSS1, worldBoundSS2, IM_COL32(0, 0, 0, 0) + anchorAlpha, 3.f); + drawList->AddLine(worldBoundSS1, worldBoundSS2, IM_COL32(0xAA, 0xAA, 0xAA, 0) + anchorAlpha, 2.f); + } + vec_t midPoint = (aabb[i] + aabb[(i + 1) % 4]) * 0.5f; + ImVec2 midBound = worldToPos(midPoint, boundsMVP); + static const float AnchorBigRadius = 8.f; + static const float AnchorSmallRadius = 6.f; + bool overBigAnchor = ImLengthSqr(worldBound1 - io.MousePos) <= (AnchorBigRadius * AnchorBigRadius); + bool overSmallAnchor = ImLengthSqr(midBound - io.MousePos) <= (AnchorBigRadius * AnchorBigRadius); + + int type = MT_NONE; + vec_t gizmoHitProportion; + + if(Intersects(operation, TRANSLATE)) + { + type = GetMoveType(operation, &gizmoHitProportion); + } + if(Intersects(operation, ROTATE) && type == MT_NONE) + { + type = GetRotateType(operation); + } + if(Intersects(operation, SCALE) && type == MT_NONE) + { + type = GetScaleType(operation); + } + + if (type != MT_NONE) + { + overBigAnchor = false; + overSmallAnchor = false; + } + + ImU32 selectionColor = GetColorU32(SELECTION); + + unsigned int bigAnchorColor = overBigAnchor ? selectionColor : (IM_COL32(0xAA, 0xAA, 0xAA, 0) + anchorAlpha); + unsigned int smallAnchorColor = overSmallAnchor ? selectionColor : (IM_COL32(0xAA, 0xAA, 0xAA, 0) + anchorAlpha); + + drawList->AddCircleFilled(worldBound1, AnchorBigRadius, IM_COL32_BLACK); + drawList->AddCircleFilled(worldBound1, AnchorBigRadius - 1.2f, bigAnchorColor); + + drawList->AddCircleFilled(midBound, AnchorSmallRadius, IM_COL32_BLACK); + drawList->AddCircleFilled(midBound, AnchorSmallRadius - 1.2f, smallAnchorColor); + int oppositeIndex = (i + 2) % 4; + // big anchor on corners + if (!gContext.mbUsingBounds && gContext.mbEnable && overBigAnchor && CanActivate()) + { + gContext.mBoundsPivot.TransformPoint(aabb[(i + 2) % 4], gContext.mModelSource); + gContext.mBoundsAnchor.TransformPoint(aabb[i], gContext.mModelSource); + gContext.mBoundsPlan = BuildPlan(gContext.mBoundsAnchor, bestAxisWorldDirection); + gContext.mBoundsBestAxis = bestAxis; + gContext.mBoundsAxis[0] = secondAxis; + gContext.mBoundsAxis[1] = thirdAxis; + + gContext.mBoundsLocalPivot.Set(0.f); + gContext.mBoundsLocalPivot[secondAxis] = aabb[oppositeIndex][secondAxis]; + gContext.mBoundsLocalPivot[thirdAxis] = aabb[oppositeIndex][thirdAxis]; + + gContext.mbUsingBounds = true; + gContext.mEditingID = gContext.mActualID; + gContext.mBoundsMatrix = gContext.mModelSource; + } + // small anchor on middle of segment + if (!gContext.mbUsingBounds && gContext.mbEnable && overSmallAnchor && CanActivate()) + { + vec_t midPointOpposite = (aabb[(i + 2) % 4] + aabb[(i + 3) % 4]) * 0.5f; + gContext.mBoundsPivot.TransformPoint(midPointOpposite, gContext.mModelSource); + gContext.mBoundsAnchor.TransformPoint(midPoint, gContext.mModelSource); + gContext.mBoundsPlan = BuildPlan(gContext.mBoundsAnchor, bestAxisWorldDirection); + gContext.mBoundsBestAxis = bestAxis; + int indices[] = { secondAxis , thirdAxis }; + gContext.mBoundsAxis[0] = indices[i % 2]; + gContext.mBoundsAxis[1] = -1; + + gContext.mBoundsLocalPivot.Set(0.f); + gContext.mBoundsLocalPivot[gContext.mBoundsAxis[0]] = aabb[oppositeIndex][indices[i % 2]];// bounds[gContext.mBoundsAxis[0]] * (((i + 1) & 2) ? 1.f : -1.f); + + gContext.mbUsingBounds = true; + gContext.mEditingID = gContext.mActualID; + gContext.mBoundsMatrix = gContext.mModelSource; + } + } + + if (gContext.mbUsingBounds && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID)) + { + matrix_t scale; + scale.SetToIdentity(); + + // compute projected mouse position on plan + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mBoundsPlan); + vec_t newPos = gContext.mRayOrigin + gContext.mRayVector * len; + + // compute a reference and delta vectors base on mouse move + vec_t deltaVector = (newPos - gContext.mBoundsPivot).Abs(); + vec_t referenceVector = (gContext.mBoundsAnchor - gContext.mBoundsPivot).Abs(); + + // for 1 or 2 axes, compute a ratio that's used for scale and snap it based on resulting length + for (int i = 0; i < 2; i++) + { + int axisIndex1 = gContext.mBoundsAxis[i]; + if (axisIndex1 == -1) + { + continue; + } + + float ratioAxis = 1.f; + vec_t axisDir = gContext.mBoundsMatrix.component[axisIndex1].Abs(); + + float dtAxis = axisDir.Dot(referenceVector); + float boundSize = bounds[axisIndex1 + 3] - bounds[axisIndex1]; + if (dtAxis > FLT_EPSILON) + { + ratioAxis = axisDir.Dot(deltaVector) / dtAxis; + } + + if (snapValues) + { + float length = boundSize * ratioAxis; + ComputeSnap(&length, snapValues[axisIndex1]); + if (boundSize > FLT_EPSILON) + { + ratioAxis = length / boundSize; + } + } + scale.component[axisIndex1] *= ratioAxis; + } + + // transform matrix + matrix_t preScale, postScale; + preScale.Translation(-gContext.mBoundsLocalPivot); + postScale.Translation(gContext.mBoundsLocalPivot); + matrix_t res = preScale * scale * postScale * gContext.mBoundsMatrix; + *matrix = res; + + // info text + char tmps[512]; + ImVec2 destinationPosOnScreen = worldToPos(gContext.mModel.v.position, gContext.mViewProjection); + ImFormatString(tmps, sizeof(tmps), "X: %.2f Y: %.2f Z: %.2f" + , (bounds[3] - bounds[0]) * gContext.mBoundsMatrix.component[0].Length() * scale.component[0].Length() + , (bounds[4] - bounds[1]) * gContext.mBoundsMatrix.component[1].Length() * scale.component[1].Length() + , (bounds[5] - bounds[2]) * gContext.mBoundsMatrix.component[2].Length() * scale.component[2].Length() + ); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 15, destinationPosOnScreen.y + 15), GetColorU32(TEXT_SHADOW), tmps); + drawList->AddText(ImVec2(destinationPosOnScreen.x + 14, destinationPosOnScreen.y + 14), GetColorU32(TEXT), tmps); + } + + if (!io.MouseDown[0]) { + gContext.mbUsingBounds = false; + gContext.mEditingID = -1; + } + if (gContext.mbUsingBounds) + { + break; + } + } + } + + /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + // + + static int GetScaleType(OPERATION op) + { + if (gContext.mbUsing) + { + return MT_NONE; + } + ImGuiIO& io = ImGui::GetIO(); + int type = MT_NONE; + + // screen + if (io.MousePos.x >= gContext.mScreenSquareMin.x && io.MousePos.x <= gContext.mScreenSquareMax.x && + io.MousePos.y >= gContext.mScreenSquareMin.y && io.MousePos.y <= gContext.mScreenSquareMax.y && + Contains(op, SCALE)) + { + type = MT_SCALE_XYZ; + } + + // compute + for (int i = 0; i < 3 && type == MT_NONE; i++) + { + if(!Intersects(op, static_cast(SCALE_X << i))) + { + continue; + } + vec_t dirPlaneX, dirPlaneY, dirAxis; + bool belowAxisLimit, belowPlaneLimit; + ComputeTripodAxisAndVisibility(i, dirAxis, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit, true); + dirAxis.TransformVector(gContext.mModelLocal); + dirPlaneX.TransformVector(gContext.mModelLocal); + dirPlaneY.TransformVector(gContext.mModelLocal); + + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, BuildPlan(gContext.mModelLocal.v.position, dirAxis)); + vec_t posOnPlan = gContext.mRayOrigin + gContext.mRayVector * len; + + const float startOffset = Contains(op, static_cast(TRANSLATE_X << i)) ? 1.0f : 0.1f; + const float endOffset = Contains(op, static_cast(TRANSLATE_X << i)) ? 1.4f : 1.0f; + const ImVec2 posOnPlanScreen = worldToPos(posOnPlan, gContext.mViewProjection); + const ImVec2 axisStartOnScreen = worldToPos(gContext.mModelLocal.v.position + dirAxis * gContext.mScreenFactor * startOffset, gContext.mViewProjection); + const ImVec2 axisEndOnScreen = worldToPos(gContext.mModelLocal.v.position + dirAxis * gContext.mScreenFactor * endOffset, gContext.mViewProjection); + + vec_t closestPointOnAxis = PointOnSegment(makeVect(posOnPlanScreen), makeVect(axisStartOnScreen), makeVect(axisEndOnScreen)); + + if ((closestPointOnAxis - makeVect(posOnPlanScreen)).Length() < 12.f) // pixel size + { + type = MT_SCALE_X + i; + } + } + + // universal + + vec_t deltaScreen = { io.MousePos.x - gContext.mScreenSquareCenter.x, io.MousePos.y - gContext.mScreenSquareCenter.y, 0.f, 0.f }; + float dist = deltaScreen.Length(); + if (Contains(op, SCALEU) && dist >= 17.0f && dist < 23.0f) + { + type = MT_SCALE_XYZ; + } + + for (int i = 0; i < 3 && type == MT_NONE; i++) + { + if (!Intersects(op, static_cast(SCALE_XU << i))) + { + continue; + } + + vec_t dirPlaneX, dirPlaneY, dirAxis; + bool belowAxisLimit, belowPlaneLimit; + ComputeTripodAxisAndVisibility(i, dirAxis, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit, true); + + // draw axis + if (belowAxisLimit) + { + bool hasTranslateOnAxis = Contains(op, static_cast(TRANSLATE_X << i)); + float markerScale = hasTranslateOnAxis ? 1.4f : 1.0f; + //ImVec2 baseSSpace = worldToPos(dirAxis * 0.1f * gContext.mScreenFactor, gContext.mMVPLocal); + //ImVec2 worldDirSSpaceNoScale = worldToPos(dirAxis * markerScale * gContext.mScreenFactor, gContext.mMVP); + ImVec2 worldDirSSpace = worldToPos((dirAxis * markerScale) * gContext.mScreenFactor, gContext.mMVPLocal); + + float distance = sqrtf(ImLengthSqr(worldDirSSpace - io.MousePos)); + if (distance < 12.f) + { + type = MT_SCALE_X + i; + } + } + } + return type; + } + + static int GetRotateType(OPERATION op) + { + if (gContext.mbUsing) + { + return MT_NONE; + } + ImGuiIO& io = ImGui::GetIO(); + int type = MT_NONE; + + vec_t deltaScreen = { io.MousePos.x - gContext.mScreenSquareCenter.x, io.MousePos.y - gContext.mScreenSquareCenter.y, 0.f, 0.f }; + float dist = deltaScreen.Length(); + if (Intersects(op, ROTATE_SCREEN) && dist >= (gContext.mRadiusSquareCenter - 4.0f) && dist < (gContext.mRadiusSquareCenter + 4.0f)) + { + type = MT_ROTATE_SCREEN; + } + + const vec_t planNormals[] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir }; + + vec_t modelViewPos; + modelViewPos.TransformPoint(gContext.mModel.v.position, gContext.mViewMat); + + for (int i = 0; i < 3 && type == MT_NONE; i++) + { + if(!Intersects(op, static_cast(ROTATE_X << i))) + { + continue; + } + // pickup plan + vec_t pickupPlan = BuildPlan(gContext.mModel.v.position, planNormals[i]); + + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, pickupPlan); + const vec_t intersectWorldPos = gContext.mRayOrigin + gContext.mRayVector * len; + vec_t intersectViewPos; + intersectViewPos.TransformPoint(intersectWorldPos, gContext.mViewMat); + + if (ImAbs(modelViewPos.z) - ImAbs(intersectViewPos.z) < -FLT_EPSILON) + { + continue; + } + + const vec_t localPos = intersectWorldPos - gContext.mModel.v.position; + vec_t idealPosOnCircle = Normalized(localPos); + idealPosOnCircle.TransformVector(gContext.mModelInverse); + const ImVec2 idealPosOnCircleScreen = worldToPos(idealPosOnCircle * rotationDisplayFactor * gContext.mScreenFactor, gContext.mMVP); + + //gContext.mDrawList->AddCircle(idealPosOnCircleScreen, 5.f, IM_COL32_WHITE); + const ImVec2 distanceOnScreen = idealPosOnCircleScreen - io.MousePos; + + const float distance = makeVect(distanceOnScreen).Length(); + if (distance < 8.f) // pixel size + { + type = MT_ROTATE_X + i; + } + } + + return type; + } + + static int GetMoveType(OPERATION op, vec_t* gizmoHitProportion) + { + if(!Intersects(op, TRANSLATE) || gContext.mbUsing || !gContext.mbMouseOver) + { + return MT_NONE; + } + ImGuiIO& io = ImGui::GetIO(); + int type = MT_NONE; + + // screen + if (io.MousePos.x >= gContext.mScreenSquareMin.x && io.MousePos.x <= gContext.mScreenSquareMax.x && + io.MousePos.y >= gContext.mScreenSquareMin.y && io.MousePos.y <= gContext.mScreenSquareMax.y && + Contains(op, TRANSLATE)) + { + type = MT_MOVE_SCREEN; + } + + const vec_t screenCoord = makeVect(io.MousePos - ImVec2(gContext.mX, gContext.mY)); + + // compute + for (int i = 0; i < 3 && type == MT_NONE; i++) + { + vec_t dirPlaneX, dirPlaneY, dirAxis; + bool belowAxisLimit, belowPlaneLimit; + ComputeTripodAxisAndVisibility(i, dirAxis, dirPlaneX, dirPlaneY, belowAxisLimit, belowPlaneLimit); + dirAxis.TransformVector(gContext.mModel); + dirPlaneX.TransformVector(gContext.mModel); + dirPlaneY.TransformVector(gContext.mModel); + + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, BuildPlan(gContext.mModel.v.position, dirAxis)); + vec_t posOnPlan = gContext.mRayOrigin + gContext.mRayVector * len; + + const ImVec2 axisStartOnScreen = worldToPos(gContext.mModel.v.position + dirAxis * gContext.mScreenFactor * 0.1f, gContext.mViewProjection) - ImVec2(gContext.mX, gContext.mY); + const ImVec2 axisEndOnScreen = worldToPos(gContext.mModel.v.position + dirAxis * gContext.mScreenFactor, gContext.mViewProjection) - ImVec2(gContext.mX, gContext.mY); + + vec_t closestPointOnAxis = PointOnSegment(screenCoord, makeVect(axisStartOnScreen), makeVect(axisEndOnScreen)); + if ((closestPointOnAxis - screenCoord).Length() < 12.f && Intersects(op, static_cast(TRANSLATE_X << i))) // pixel size + { + type = MT_MOVE_X + i; + } + + const float dx = dirPlaneX.Dot3((posOnPlan - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor)); + const float dy = dirPlaneY.Dot3((posOnPlan - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor)); + if (belowPlaneLimit && dx >= quadUV[0] && dx <= quadUV[4] && dy >= quadUV[1] && dy <= quadUV[3] && Contains(op, TRANSLATE_PLANS[i])) + { + type = MT_MOVE_YZ + i; + } + + if (gizmoHitProportion) + { + *gizmoHitProportion = makeVect(dx, dy, 0.f); + } + } + return type; + } + + static bool HandleTranslation(float* matrix, float* deltaMatrix, OPERATION op, int& type, const float* snap) + { + if(!Intersects(op, TRANSLATE) || type != MT_NONE) + { + return false; + } + const ImGuiIO& io = ImGui::GetIO(); + const bool applyRotationLocaly = gContext.mMode == LOCAL || type == MT_MOVE_SCREEN; + bool modified = false; + + // move + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsTranslateType(gContext.mCurrentOperation)) + { +#if IMGUI_VERSION_NUM >= 18723 + ImGui::SetNextFrameWantCaptureMouse(true); +#else + ImGui::CaptureMouseFromApp(); +#endif + const float signedLength = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan); + const float len = fabsf(signedLength); // near plan + const vec_t newPos = gContext.mRayOrigin + gContext.mRayVector * len; + + // compute delta + const vec_t newOrigin = newPos - gContext.mRelativeOrigin * gContext.mScreenFactor; + vec_t delta = newOrigin - gContext.mModel.v.position; + + // 1 axis constraint + if (gContext.mCurrentOperation >= MT_MOVE_X && gContext.mCurrentOperation <= MT_MOVE_Z) + { + const int axisIndex = gContext.mCurrentOperation - MT_MOVE_X; + const vec_t& axisValue = *(vec_t*)&gContext.mModel.m[axisIndex]; + const float lengthOnAxis = Dot(axisValue, delta); + delta = axisValue * lengthOnAxis; + } + + // snap + if (snap) + { + vec_t cumulativeDelta = gContext.mModel.v.position + delta - gContext.mMatrixOrigin; + if (applyRotationLocaly) + { + matrix_t modelSourceNormalized = gContext.mModelSource; + modelSourceNormalized.OrthoNormalize(); + matrix_t modelSourceNormalizedInverse; + modelSourceNormalizedInverse.Inverse(modelSourceNormalized); + cumulativeDelta.TransformVector(modelSourceNormalizedInverse); + ComputeSnap(cumulativeDelta, snap); + cumulativeDelta.TransformVector(modelSourceNormalized); + } + else + { + ComputeSnap(cumulativeDelta, snap); + } + delta = gContext.mMatrixOrigin + cumulativeDelta - gContext.mModel.v.position; + + } + + if (delta != gContext.mTranslationLastDelta) + { + modified = true; + } + gContext.mTranslationLastDelta = delta; + + // compute matrix & delta + matrix_t deltaMatrixTranslation; + deltaMatrixTranslation.Translation(delta); + if (deltaMatrix) + { + memcpy(deltaMatrix, deltaMatrixTranslation.m16, sizeof(float) * 16); + } + + const matrix_t res = gContext.mModelSource * deltaMatrixTranslation; + *(matrix_t*)matrix = res; + + if (!io.MouseDown[0]) + { + gContext.mbUsing = false; + } + + type = gContext.mCurrentOperation; + } + else + { + // find new possible way to move + vec_t gizmoHitProportion; + type = GetMoveType(op, &gizmoHitProportion); + if (type != MT_NONE) + { +#if IMGUI_VERSION_NUM >= 18723 + ImGui::SetNextFrameWantCaptureMouse(true); +#else + ImGui::CaptureMouseFromApp(); +#endif + } + if (CanActivate() && type != MT_NONE) + { + gContext.mbUsing = true; + gContext.mEditingID = gContext.mActualID; + gContext.mCurrentOperation = type; + vec_t movePlanNormal[] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir, + gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir, + -gContext.mCameraDir }; + + vec_t cameraToModelNormalized = Normalized(gContext.mModel.v.position - gContext.mCameraEye); + for (unsigned int i = 0; i < 3; i++) + { + vec_t orthoVector = Cross(movePlanNormal[i], cameraToModelNormalized); + movePlanNormal[i].Cross(orthoVector); + movePlanNormal[i].Normalize(); + } + // pickup plan + gContext.mTranslationPlan = BuildPlan(gContext.mModel.v.position, movePlanNormal[type - MT_MOVE_X]); + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan); + gContext.mTranslationPlanOrigin = gContext.mRayOrigin + gContext.mRayVector * len; + gContext.mMatrixOrigin = gContext.mModel.v.position; + + gContext.mRelativeOrigin = (gContext.mTranslationPlanOrigin - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor); + } + } + return modified; + } + + static bool HandleScale(float* matrix, float* deltaMatrix, OPERATION op, int& type, const float* snap) + { + if((!Intersects(op, SCALE) && !Intersects(op, SCALEU)) || type != MT_NONE || !gContext.mbMouseOver) + { + return false; + } + ImGuiIO& io = ImGui::GetIO(); + bool modified = false; + + if (!gContext.mbUsing) + { + // find new possible way to scale + type = GetScaleType(op); + if (type != MT_NONE) + { +#if IMGUI_VERSION_NUM >= 18723 + ImGui::SetNextFrameWantCaptureMouse(true); +#else + ImGui::CaptureMouseFromApp(); +#endif + } + if (CanActivate() && type != MT_NONE) + { + gContext.mbUsing = true; + gContext.mEditingID = gContext.mActualID; + gContext.mCurrentOperation = type; + const vec_t movePlanNormal[] = { gContext.mModel.v.up, gContext.mModel.v.dir, gContext.mModel.v.right, gContext.mModel.v.dir, gContext.mModel.v.up, gContext.mModel.v.right, -gContext.mCameraDir }; + // pickup plan + + gContext.mTranslationPlan = BuildPlan(gContext.mModel.v.position, movePlanNormal[type - MT_SCALE_X]); + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan); + gContext.mTranslationPlanOrigin = gContext.mRayOrigin + gContext.mRayVector * len; + gContext.mMatrixOrigin = gContext.mModel.v.position; + gContext.mScale.Set(1.f, 1.f, 1.f); + gContext.mRelativeOrigin = (gContext.mTranslationPlanOrigin - gContext.mModel.v.position) * (1.f / gContext.mScreenFactor); + gContext.mScaleValueOrigin = makeVect(gContext.mModelSource.v.right.Length(), gContext.mModelSource.v.up.Length(), gContext.mModelSource.v.dir.Length()); + gContext.mSaveMousePosx = io.MousePos.x; + } + } + // scale + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsScaleType(gContext.mCurrentOperation)) + { +#if IMGUI_VERSION_NUM >= 18723 + ImGui::SetNextFrameWantCaptureMouse(true); +#else + ImGui::CaptureMouseFromApp(); +#endif + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan); + vec_t newPos = gContext.mRayOrigin + gContext.mRayVector * len; + vec_t newOrigin = newPos - gContext.mRelativeOrigin * gContext.mScreenFactor; + vec_t delta = newOrigin - gContext.mModelLocal.v.position; + + // 1 axis constraint + if (gContext.mCurrentOperation >= MT_SCALE_X && gContext.mCurrentOperation <= MT_SCALE_Z) + { + int axisIndex = gContext.mCurrentOperation - MT_SCALE_X; + const vec_t& axisValue = *(vec_t*)&gContext.mModelLocal.m[axisIndex]; + float lengthOnAxis = Dot(axisValue, delta); + delta = axisValue * lengthOnAxis; + + vec_t baseVector = gContext.mTranslationPlanOrigin - gContext.mModelLocal.v.position; + float ratio = Dot(axisValue, baseVector + delta) / Dot(axisValue, baseVector); + + gContext.mScale[axisIndex] = max(ratio, 0.001f); + } + else + { + float scaleDelta = (io.MousePos.x - gContext.mSaveMousePosx) * 0.01f; + gContext.mScale.Set(max(1.f + scaleDelta, 0.001f)); + } + + // snap + if (snap) + { + float scaleSnap[] = { snap[0], snap[0], snap[0] }; + ComputeSnap(gContext.mScale, scaleSnap); + } + + // no 0 allowed + for (int i = 0; i < 3; i++) + gContext.mScale[i] = max(gContext.mScale[i], 0.001f); + + if (gContext.mScaleLast != gContext.mScale) + { + modified = true; + } + gContext.mScaleLast = gContext.mScale; + + // compute matrix & delta + matrix_t deltaMatrixScale; + deltaMatrixScale.Scale(gContext.mScale * gContext.mScaleValueOrigin); + + matrix_t res = deltaMatrixScale * gContext.mModelLocal; + *(matrix_t*)matrix = res; + + if (deltaMatrix) + { + vec_t deltaScale = gContext.mScale * gContext.mScaleValueOrigin; + + vec_t originalScaleDivider; + originalScaleDivider.x = 1 / gContext.mModelScaleOrigin.x; + originalScaleDivider.y = 1 / gContext.mModelScaleOrigin.y; + originalScaleDivider.z = 1 / gContext.mModelScaleOrigin.z; + + deltaScale = deltaScale * originalScaleDivider; + + deltaMatrixScale.Scale(deltaScale); + memcpy(deltaMatrix, deltaMatrixScale.m16, sizeof(float) * 16); + } + + if (!io.MouseDown[0]) + { + gContext.mbUsing = false; + gContext.mScale.Set(1.f, 1.f, 1.f); + } + + type = gContext.mCurrentOperation; + } + return modified; + } + + static bool HandleRotation(float* matrix, float* deltaMatrix, OPERATION op, int& type, const float* snap) + { + if(!Intersects(op, ROTATE) || type != MT_NONE || !gContext.mbMouseOver) + { + return false; + } + ImGuiIO& io = ImGui::GetIO(); + bool applyRotationLocaly = gContext.mMode == LOCAL; + bool modified = false; + + if (!gContext.mbUsing) + { + type = GetRotateType(op); + + if (type != MT_NONE) + { +#if IMGUI_VERSION_NUM >= 18723 + ImGui::SetNextFrameWantCaptureMouse(true); +#else + ImGui::CaptureMouseFromApp(); +#endif + } + + if (type == MT_ROTATE_SCREEN) + { + applyRotationLocaly = true; + } + + if (CanActivate() && type != MT_NONE) + { + gContext.mbUsing = true; + gContext.mEditingID = gContext.mActualID; + gContext.mCurrentOperation = type; + const vec_t rotatePlanNormal[] = { gContext.mModel.v.right, gContext.mModel.v.up, gContext.mModel.v.dir, -gContext.mCameraDir }; + // pickup plan + if (applyRotationLocaly) + { + gContext.mTranslationPlan = BuildPlan(gContext.mModel.v.position, rotatePlanNormal[type - MT_ROTATE_X]); + } + else + { + gContext.mTranslationPlan = BuildPlan(gContext.mModelSource.v.position, directionUnary[type - MT_ROTATE_X]); + } + + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, gContext.mTranslationPlan); + vec_t localPos = gContext.mRayOrigin + gContext.mRayVector * len - gContext.mModel.v.position; + gContext.mRotationVectorSource = Normalized(localPos); + gContext.mRotationAngleOrigin = ComputeAngleOnPlan(); + } + } + + // rotation + if (gContext.mbUsing && (gContext.mActualID == -1 || gContext.mActualID == gContext.mEditingID) && IsRotateType(gContext.mCurrentOperation)) + { +#if IMGUI_VERSION_NUM >= 18723 + ImGui::SetNextFrameWantCaptureMouse(true); +#else + ImGui::CaptureMouseFromApp(); +#endif + gContext.mRotationAngle = ComputeAngleOnPlan(); + if (snap) + { + float snapInRadian = snap[0] * DEG2RAD; + ComputeSnap(&gContext.mRotationAngle, snapInRadian); + } + vec_t rotationAxisLocalSpace; + + rotationAxisLocalSpace.TransformVector(makeVect(gContext.mTranslationPlan.x, gContext.mTranslationPlan.y, gContext.mTranslationPlan.z, 0.f), gContext.mModelInverse); + rotationAxisLocalSpace.Normalize(); + + matrix_t deltaRotation; + deltaRotation.RotationAxis(rotationAxisLocalSpace, gContext.mRotationAngle - gContext.mRotationAngleOrigin); + if (gContext.mRotationAngle != gContext.mRotationAngleOrigin) + { + modified = true; + } + gContext.mRotationAngleOrigin = gContext.mRotationAngle; + + matrix_t scaleOrigin; + scaleOrigin.Scale(gContext.mModelScaleOrigin); + + if (applyRotationLocaly) + { + *(matrix_t*)matrix = scaleOrigin * deltaRotation * gContext.mModelLocal; + } + else + { + matrix_t res = gContext.mModelSource; + res.v.position.Set(0.f); + + *(matrix_t*)matrix = res * deltaRotation; + ((matrix_t*)matrix)->v.position = gContext.mModelSource.v.position; + } + + if (deltaMatrix) + { + *(matrix_t*)deltaMatrix = gContext.mModelInverse * deltaRotation * gContext.mModel; + } + + if (!io.MouseDown[0]) + { + gContext.mbUsing = false; + gContext.mEditingID = -1; + } + type = gContext.mCurrentOperation; + } + return modified; + } + + void DecomposeMatrixToComponents(const float* matrix, float* translation, float* rotation, float* scale) + { + matrix_t mat = *(matrix_t*)matrix; + + scale[0] = mat.v.right.Length(); + scale[1] = mat.v.up.Length(); + scale[2] = mat.v.dir.Length(); + + mat.OrthoNormalize(); + + rotation[0] = RAD2DEG * atan2f(mat.m[1][2], mat.m[2][2]); + rotation[1] = RAD2DEG * atan2f(-mat.m[0][2], sqrtf(mat.m[1][2] * mat.m[1][2] + mat.m[2][2] * mat.m[2][2])); + rotation[2] = RAD2DEG * atan2f(mat.m[0][1], mat.m[0][0]); + + translation[0] = mat.v.position.x; + translation[1] = mat.v.position.y; + translation[2] = mat.v.position.z; + } + + void RecomposeMatrixFromComponents(const float* translation, const float* rotation, const float* scale, float* matrix) + { + matrix_t& mat = *(matrix_t*)matrix; + + matrix_t rot[3]; + for (int i = 0; i < 3; i++) + { + rot[i].RotationAxis(directionUnary[i], rotation[i] * DEG2RAD); + } + + mat = rot[0] * rot[1] * rot[2]; + + float validScale[3]; + for (int i = 0; i < 3; i++) + { + if (fabsf(scale[i]) < FLT_EPSILON) + { + validScale[i] = 0.001f; + } + else + { + validScale[i] = scale[i]; + } + } + mat.v.right *= validScale[0]; + mat.v.up *= validScale[1]; + mat.v.dir *= validScale[2]; + mat.v.position.Set(translation[0], translation[1], translation[2], 1.f); + } + + void SetID(int id) + { + gContext.mActualID = id; + } + + void AllowAxisFlip(bool value) + { + gContext.mAllowAxisFlip = value; + } + + void SetAxisLimit(float value) + { + gContext.mAxisLimit=value; + } + + void SetPlaneLimit(float value) + { + gContext.mPlaneLimit = value; + } + + bool Manipulate(const float* view, const float* projection, OPERATION operation, MODE mode, float* matrix, float* deltaMatrix, const float* snap, const float* localBounds, const float* boundsSnap) + { + // Scale is always local or matrix will be skewed when applying world scale or oriented matrix + ComputeContext(view, projection, matrix, (operation & SCALE) ? LOCAL : mode); + + // set delta to identity + if (deltaMatrix) + { + ((matrix_t*)deltaMatrix)->SetToIdentity(); + } + + // behind camera + vec_t camSpacePosition; + camSpacePosition.TransformPoint(makeVect(0.f, 0.f, 0.f), gContext.mMVP); + if (!gContext.mIsOrthographic && camSpacePosition.z < 0.001f && !gContext.mbUsing) + { + return false; + } + + // -- + int type = MT_NONE; + bool manipulated = false; + if (gContext.mbEnable) + { + if (!gContext.mbUsingBounds) + { + manipulated = HandleTranslation(matrix, deltaMatrix, operation, type, snap) || + HandleScale(matrix, deltaMatrix, operation, type, snap) || + HandleRotation(matrix, deltaMatrix, operation, type, snap); + } + } + + if (localBounds && !gContext.mbUsing) + { + HandleAndDrawLocalBounds(localBounds, (matrix_t*)matrix, boundsSnap, operation); + } + + gContext.mOperation = operation; + if (!gContext.mbUsingBounds) + { + DrawRotationGizmo(operation, type); + DrawTranslationGizmo(operation, type); + DrawScaleGizmo(operation, type); + DrawScaleUniveralGizmo(operation, type); + } + return manipulated; + } + + void SetGizmoSizeClipSpace(float value) + { + gContext.mGizmoSizeClipSpace = value; + } + + /////////////////////////////////////////////////////////////////////////////////////////////////// + void ComputeFrustumPlanes(vec_t* frustum, const float* clip) + { + frustum[0].x = clip[3] - clip[0]; + frustum[0].y = clip[7] - clip[4]; + frustum[0].z = clip[11] - clip[8]; + frustum[0].w = clip[15] - clip[12]; + + frustum[1].x = clip[3] + clip[0]; + frustum[1].y = clip[7] + clip[4]; + frustum[1].z = clip[11] + clip[8]; + frustum[1].w = clip[15] + clip[12]; + + frustum[2].x = clip[3] + clip[1]; + frustum[2].y = clip[7] + clip[5]; + frustum[2].z = clip[11] + clip[9]; + frustum[2].w = clip[15] + clip[13]; + + frustum[3].x = clip[3] - clip[1]; + frustum[3].y = clip[7] - clip[5]; + frustum[3].z = clip[11] - clip[9]; + frustum[3].w = clip[15] - clip[13]; + + frustum[4].x = clip[3] - clip[2]; + frustum[4].y = clip[7] - clip[6]; + frustum[4].z = clip[11] - clip[10]; + frustum[4].w = clip[15] - clip[14]; + + frustum[5].x = clip[3] + clip[2]; + frustum[5].y = clip[7] + clip[6]; + frustum[5].z = clip[11] + clip[10]; + frustum[5].w = clip[15] + clip[14]; + + for (int i = 0; i < 6; i++) + { + frustum[i].Normalize(); + } + } + + void DrawCubes(const float* view, const float* projection, const float* matrices, int matrixCount) + { + matrix_t viewInverse; + viewInverse.Inverse(*(matrix_t*)view); + + struct CubeFace + { + float z; + ImVec2 faceCoordsScreen[4]; + ImU32 color; + }; + CubeFace* faces = (CubeFace*)_malloca(sizeof(CubeFace) * matrixCount * 6); + + if (!faces) + { + return; + } + + vec_t frustum[6]; + matrix_t viewProjection = *(matrix_t*)view * *(matrix_t*)projection; + ComputeFrustumPlanes(frustum, viewProjection.m16); + + int cubeFaceCount = 0; + for (int cube = 0; cube < matrixCount; cube++) + { + const float* matrix = &matrices[cube * 16]; + + matrix_t res = *(matrix_t*)matrix * *(matrix_t*)view * *(matrix_t*)projection; + + for (int iFace = 0; iFace < 6; iFace++) + { + const int normalIndex = (iFace % 3); + const int perpXIndex = (normalIndex + 1) % 3; + const int perpYIndex = (normalIndex + 2) % 3; + const float invert = (iFace > 2) ? -1.f : 1.f; + + const vec_t faceCoords[4] = { directionUnary[normalIndex] + directionUnary[perpXIndex] + directionUnary[perpYIndex], + directionUnary[normalIndex] + directionUnary[perpXIndex] - directionUnary[perpYIndex], + directionUnary[normalIndex] - directionUnary[perpXIndex] - directionUnary[perpYIndex], + directionUnary[normalIndex] - directionUnary[perpXIndex] + directionUnary[perpYIndex], + }; + + // clipping + /* + bool skipFace = false; + for (unsigned int iCoord = 0; iCoord < 4; iCoord++) + { + vec_t camSpacePosition; + camSpacePosition.TransformPoint(faceCoords[iCoord] * 0.5f * invert, res); + if (camSpacePosition.z < 0.001f) + { + skipFace = true; + break; + } + } + if (skipFace) + { + continue; + } + */ + vec_t centerPosition, centerPositionVP; + centerPosition.TransformPoint(directionUnary[normalIndex] * 0.5f * invert, *(matrix_t*)matrix); + centerPositionVP.TransformPoint(directionUnary[normalIndex] * 0.5f * invert, res); + + bool inFrustum = true; + for (int iFrustum = 0; iFrustum < 6; iFrustum++) + { + float dist = DistanceToPlane(centerPosition, frustum[iFrustum]); + if (dist < 0.f) + { + inFrustum = false; + break; + } + } + + if (!inFrustum) + { + continue; + } + CubeFace& cubeFace = faces[cubeFaceCount]; + + // 3D->2D + //ImVec2 faceCoordsScreen[4]; + for (unsigned int iCoord = 0; iCoord < 4; iCoord++) + { + cubeFace.faceCoordsScreen[iCoord] = worldToPos(faceCoords[iCoord] * 0.5f * invert, res); + } + + ImU32 directionColor = GetColorU32(DIRECTION_X + normalIndex); + cubeFace.color = directionColor | IM_COL32(0x80, 0x80, 0x80, 0); + + cubeFace.z = centerPositionVP.z / centerPositionVP.w; + cubeFaceCount++; + } + } + qsort(faces, cubeFaceCount, sizeof(CubeFace), [](void const* _a, void const* _b) { + CubeFace* a = (CubeFace*)_a; + CubeFace* b = (CubeFace*)_b; + if (a->z < b->z) + { + return 1; + } + return -1; + }); + // draw face with lighter color + for (int iFace = 0; iFace < cubeFaceCount; iFace++) + { + const CubeFace& cubeFace = faces[iFace]; + gContext.mDrawList->AddConvexPolyFilled(cubeFace.faceCoordsScreen, 4, cubeFace.color); + } + + _freea(faces); + } + + void DrawGrid(const float* view, const float* projection, const float* matrix, const float gridSize) + { + matrix_t viewProjection = *(matrix_t*)view * *(matrix_t*)projection; + vec_t frustum[6]; + ComputeFrustumPlanes(frustum, viewProjection.m16); + matrix_t res = *(matrix_t*)matrix * viewProjection; + + for (float f = -gridSize; f <= gridSize; f += 1.f) + { + for (int dir = 0; dir < 2; dir++) + { + vec_t ptA = makeVect(dir ? -gridSize : f, 0.f, dir ? f : -gridSize); + vec_t ptB = makeVect(dir ? gridSize : f, 0.f, dir ? f : gridSize); + bool visible = true; + for (int i = 0; i < 6; i++) + { + float dA = DistanceToPlane(ptA, frustum[i]); + float dB = DistanceToPlane(ptB, frustum[i]); + if (dA < 0.f && dB < 0.f) + { + visible = false; + break; + } + if (dA > 0.f && dB > 0.f) + { + continue; + } + if (dA < 0.f) + { + float len = fabsf(dA - dB); + float t = fabsf(dA) / len; + ptA.Lerp(ptB, t); + } + if (dB < 0.f) + { + float len = fabsf(dB - dA); + float t = fabsf(dB) / len; + ptB.Lerp(ptA, t); + } + } + if (visible) + { + ImU32 col = IM_COL32(0x80, 0x80, 0x80, 0xFF); + col = (fmodf(fabsf(f), 10.f) < FLT_EPSILON) ? IM_COL32(0x90, 0x90, 0x90, 0xFF) : col; + col = (fabsf(f) < FLT_EPSILON) ? IM_COL32(0x40, 0x40, 0x40, 0xFF): col; + + float thickness = 1.f; + thickness = (fmodf(fabsf(f), 10.f) < FLT_EPSILON) ? 1.5f : thickness; + thickness = (fabsf(f) < FLT_EPSILON) ? 2.3f : thickness; + + gContext.mDrawList->AddLine(worldToPos(ptA, res), worldToPos(ptB, res), col, thickness); + } + } + } + } + + void ViewManipulate(float* view, const float* projection, OPERATION operation, MODE mode, float* matrix, float length, ImVec2 position, ImVec2 size, ImU32 backgroundColor) + { + // Scale is always local or matrix will be skewed when applying world scale or oriented matrix + ComputeContext(view, projection, matrix, (operation & SCALE) ? LOCAL : mode); + ViewManipulate(view, length, position, size, backgroundColor); + } + + void ViewManipulate(float* view, float length, ImVec2 position, ImVec2 size, ImU32 backgroundColor) + { + static bool isDraging = false; + static bool isClicking = false; + static bool isInside = false; + static vec_t interpolationUp; + static vec_t interpolationDir; + static int interpolationFrames = 0; + const vec_t referenceUp = makeVect(0.f, 1.f, 0.f); + + matrix_t svgView, svgProjection; + svgView = gContext.mViewMat; + svgProjection = gContext.mProjectionMat; + + ImGuiIO& io = ImGui::GetIO(); + gContext.mDrawList->AddRectFilled(position, position + size, backgroundColor); + matrix_t viewInverse; + viewInverse.Inverse(*(matrix_t*)view); + + const vec_t camTarget = viewInverse.v.position - viewInverse.v.dir * length; + + // view/projection matrices + const float distance = 3.f; + matrix_t cubeProjection, cubeView; + float fov = acosf(distance / (sqrtf(distance * distance + 3.f))) * RAD2DEG; + Perspective(fov / sqrtf(2.f), size.x / size.y, 0.01f, 1000.f, cubeProjection.m16); + + vec_t dir = makeVect(viewInverse.m[2][0], viewInverse.m[2][1], viewInverse.m[2][2]); + vec_t up = makeVect(viewInverse.m[1][0], viewInverse.m[1][1], viewInverse.m[1][2]); + vec_t eye = dir * distance; + vec_t zero = makeVect(0.f, 0.f); + LookAt(&eye.x, &zero.x, &up.x, cubeView.m16); + + // set context + gContext.mViewMat = cubeView; + gContext.mProjectionMat = cubeProjection; + ComputeCameraRay(gContext.mRayOrigin, gContext.mRayVector, position, size); + + const matrix_t res = cubeView * cubeProjection; + + // panels + static const ImVec2 panelPosition[9] = { ImVec2(0.75f,0.75f), ImVec2(0.25f, 0.75f), ImVec2(0.f, 0.75f), + ImVec2(0.75f, 0.25f), ImVec2(0.25f, 0.25f), ImVec2(0.f, 0.25f), + ImVec2(0.75f, 0.f), ImVec2(0.25f, 0.f), ImVec2(0.f, 0.f) }; + + static const ImVec2 panelSize[9] = { ImVec2(0.25f,0.25f), ImVec2(0.5f, 0.25f), ImVec2(0.25f, 0.25f), + ImVec2(0.25f, 0.5f), ImVec2(0.5f, 0.5f), ImVec2(0.25f, 0.5f), + ImVec2(0.25f, 0.25f), ImVec2(0.5f, 0.25f), ImVec2(0.25f, 0.25f) }; + + // tag faces + bool boxes[27]{}; + static int overBox = -1; + for (int iPass = 0; iPass < 2; iPass++) + { + for (int iFace = 0; iFace < 6; iFace++) + { + const int normalIndex = (iFace % 3); + const int perpXIndex = (normalIndex + 1) % 3; + const int perpYIndex = (normalIndex + 2) % 3; + const float invert = (iFace > 2) ? -1.f : 1.f; + const vec_t indexVectorX = directionUnary[perpXIndex] * invert; + const vec_t indexVectorY = directionUnary[perpYIndex] * invert; + const vec_t boxOrigin = directionUnary[normalIndex] * -invert - indexVectorX - indexVectorY; + + // plan local space + const vec_t n = directionUnary[normalIndex] * invert; + vec_t viewSpaceNormal = n; + vec_t viewSpacePoint = n * 0.5f; + viewSpaceNormal.TransformVector(cubeView); + viewSpaceNormal.Normalize(); + viewSpacePoint.TransformPoint(cubeView); + const vec_t viewSpaceFacePlan = BuildPlan(viewSpacePoint, viewSpaceNormal); + + // back face culling + if (viewSpaceFacePlan.w > 0.f) + { + continue; + } + + const vec_t facePlan = BuildPlan(n * 0.5f, n); + + const float len = IntersectRayPlane(gContext.mRayOrigin, gContext.mRayVector, facePlan); + vec_t posOnPlan = gContext.mRayOrigin + gContext.mRayVector * len - (n * 0.5f); + + float localx = Dot(directionUnary[perpXIndex], posOnPlan) * invert + 0.5f; + float localy = Dot(directionUnary[perpYIndex], posOnPlan) * invert + 0.5f; + + // panels + const vec_t dx = directionUnary[perpXIndex]; + const vec_t dy = directionUnary[perpYIndex]; + const vec_t origin = directionUnary[normalIndex] - dx - dy; + for (int iPanel = 0; iPanel < 9; iPanel++) + { + vec_t boxCoord = boxOrigin + indexVectorX * float(iPanel % 3) + indexVectorY * float(iPanel / 3) + makeVect(1.f, 1.f, 1.f); + const ImVec2 p = panelPosition[iPanel] * 2.f; + const ImVec2 s = panelSize[iPanel] * 2.f; + ImVec2 faceCoordsScreen[4]; + vec_t panelPos[4] = { dx * p.x + dy * p.y, + dx * p.x + dy * (p.y + s.y), + dx * (p.x + s.x) + dy * (p.y + s.y), + dx * (p.x + s.x) + dy * p.y }; + + for (unsigned int iCoord = 0; iCoord < 4; iCoord++) + { + faceCoordsScreen[iCoord] = worldToPos((panelPos[iCoord] + origin) * 0.5f * invert, res, position, size); + } + + const ImVec2 panelCorners[2] = { panelPosition[iPanel], panelPosition[iPanel] + panelSize[iPanel] }; + bool insidePanel = localx > panelCorners[0].x && localx < panelCorners[1].x && localy > panelCorners[0].y && localy < panelCorners[1].y; + int boxCoordInt = int(boxCoord.x * 9.f + boxCoord.y * 3.f + boxCoord.z); + IM_ASSERT(boxCoordInt < 27); + boxes[boxCoordInt] |= insidePanel && (!isDraging) && gContext.mbMouseOver; + + // draw face with lighter color + if (iPass) + { + ImU32 directionColor = GetColorU32(DIRECTION_X + normalIndex); + gContext.mDrawList->AddConvexPolyFilled(faceCoordsScreen, 4, (directionColor | IM_COL32(0x80, 0x80, 0x80, 0x80)) | (isInside ? IM_COL32(0x08, 0x08, 0x08, 0) : 0)); + if (boxes[boxCoordInt]) + { + gContext.mDrawList->AddConvexPolyFilled(faceCoordsScreen, 4, IM_COL32(0xF0, 0xA0, 0x60, 0x80)); + + if (io.MouseDown[0] && !isClicking && !isDraging && GImGui->ActiveId == 0) { + overBox = boxCoordInt; + isClicking = true; + isDraging = true; + } + } + } + } + } + } + if (interpolationFrames) + { + interpolationFrames--; + vec_t newDir = viewInverse.v.dir; + newDir.Lerp(interpolationDir, 0.2f); + newDir.Normalize(); + + vec_t newUp = viewInverse.v.up; + newUp.Lerp(interpolationUp, 0.3f); + newUp.Normalize(); + newUp = interpolationUp; + vec_t newEye = camTarget + newDir * length; + LookAt(&newEye.x, &camTarget.x, &newUp.x, view); + } + isInside = gContext.mbMouseOver && ImRect(position, position + size).Contains(io.MousePos); + + if (io.MouseDown[0] && (fabsf(io.MouseDelta[0]) || fabsf(io.MouseDelta[1])) && isClicking) + { + isClicking = false; + } + + if (!io.MouseDown[0]) + { + if (isClicking) + { + // apply new view direction + int cx = overBox / 9; + int cy = (overBox - cx * 9) / 3; + int cz = overBox % 3; + interpolationDir = makeVect(1.f - (float)cx, 1.f - (float)cy, 1.f - (float)cz); + interpolationDir.Normalize(); + + if (fabsf(Dot(interpolationDir, referenceUp)) > 1.0f - 0.01f) + { + vec_t right = viewInverse.v.right; + if (fabsf(right.x) > fabsf(right.z)) + { + right.z = 0.f; + } + else + { + right.x = 0.f; + } + right.Normalize(); + interpolationUp = Cross(interpolationDir, right); + interpolationUp.Normalize(); + } + else + { + interpolationUp = referenceUp; + } + interpolationFrames = 40; + + } + isClicking = false; + isDraging = false; + } + + + if (isDraging) + { + matrix_t rx, ry, roll; + + rx.RotationAxis(referenceUp, -io.MouseDelta.x * 0.01f); + ry.RotationAxis(viewInverse.v.right, -io.MouseDelta.y * 0.01f); + + roll = rx * ry; + + vec_t newDir = viewInverse.v.dir; + newDir.TransformVector(roll); + newDir.Normalize(); + + // clamp + vec_t planDir = Cross(viewInverse.v.right, referenceUp); + planDir.y = 0.f; + planDir.Normalize(); + float dt = Dot(planDir, newDir); + if (dt < 0.0f) + { + newDir += planDir * dt; + newDir.Normalize(); + } + + vec_t newEye = camTarget + newDir * length; + LookAt(&newEye.x, &camTarget.x, &referenceUp.x, view); + } + + // restore view/projection because it was used to compute ray + ComputeContext(svgView.m16, svgProjection.m16, gContext.mModelSource.m16, gContext.mMode); + } +}; diff --git a/Sandbox/src/Editor.cpp b/Sandbox/src/Editor.cpp index c2c722c..823dd82 100644 --- a/Sandbox/src/Editor.cpp +++ b/Sandbox/src/Editor.cpp @@ -1,6 +1,7 @@ #include "Editor.h" #include +#include #include "KP3D_Renderer3D.h" #include "KP3D_StaticMesh.h" @@ -16,6 +17,7 @@ #include "Sandbox.h" namespace { + constexpr float MIN_DISTANCE_FROM_PLAYER = 0.1f; constexpr float MAX_DISTANCE_FROM_PLAYER = 100.0f; @@ -58,116 +60,26 @@ void Editor::Update() KEY_SHORTCUT(SPACE, m_mode = MODE_NORMAL); KEY_SHORTCUT(V, m_mode = MODE_BUILD); - KEY_SHORTCUT(C, m_mode = MODE_SECTOR_EDIT); if (anything_hovered) return; - if (m_mode == MODE_BUILD) + switch (m_mode) { - UpdateModeBuild(); - return; - } - - // Raycast through everything on the map - if (sandbox->IsMouseButtonDown(kp3d::MOUSE_BUTTON_LEFT)) - { - using namespace kp3d; - struct Target - { - Vec3 position; - float distance; - RenderBatch3D* b; - }; - std::vector targets; - for (RenderBatch3D& b : sandbox->map.GetMeshRef().GetBatchesRef()) - { - for (size_t i = 0; i < b.vertex_data.size(); i += 3) - { - Vec3 pos; - Triangle tri = { b.vertex_data[i].position, b.vertex_data[i + 1].position, b.vertex_data[i + 2].position }; - auto ray = GetRayFromCamera(sandbox->camera); - bool raycast = RayIntersectsTriangle(ray[0], ray[1], &tri, pos); - if (raycast) - { - float dist = sqrtf( - pow(pos.x - sandbox->camera.position.x, 2) + - pow(pos.y - sandbox->camera.position.y, 2) + - pow(pos.z - sandbox->camera.position.z, 2) - ); - targets.push_back({ pos, dist, &b }); - } - } - if (!targets.empty()) - { - std::sort(targets.begin(), targets.end(), [&](const Target& a, const Target& b) { return a.distance > b.distance; }); - const Target& target = targets.back(); - if (editor_hovered_batch.empty()) - { - if (std::find(editor_hovered_batch.begin(), editor_hovered_batch.end(), target.b) == editor_hovered_batch.end()) - editor_hovered_batch.push_back(target.b); - } - else - { - try - { - const auto& info = std::any_cast(kp3d::editor_hovered_batch[0]->userdata); - const auto& target_info = std::any_cast(target.b->userdata); - if (info.wall && target_info.wall) - { - if (std::find(editor_hovered_batch.begin(), editor_hovered_batch.end(), target.b) == editor_hovered_batch.end()) - editor_hovered_batch.push_back(target.b); - } - else if (info.flat && target_info.flat) - { - if (std::find(editor_hovered_batch.begin(), editor_hovered_batch.end(), target.b) == editor_hovered_batch.end()) - editor_hovered_batch.push_back(target.b); - } - } - catch (std::bad_any_cast& e) - { - KP3D_LOG_ERROR("Bad any cast: {}", e.what()); - } - } - } - else - { - // editor_hovered_batch = nullptr; - if (!sandbox->IsKeyDown(kp3d::KEY_LSHIFT)) - { - editor_hovered_batch.clear(); - } - } - } - sandbox->MouseButtonReset(kp3d::MOUSE_BUTTON_LEFT); + case MODE_BUILD: UpdateModeBuild(); break; + case MODE_NORMAL: UpdateModeNormal(); break; } } void Editor::RenderMap() { - // Render the map grid sandbox->map.RenderGrid(); - // Render the points we're drawing - if (points.size() > 1) + switch (m_mode) { - for (int i = 0; i < points.size() - 1; i++) - RenderLine(points[i], points[i + 1], 0xFF00FFFF); + case MODE_BUILD: RenderModeBuild(); break; + case MODE_NORMAL: RenderModeNormal(); break; } - if (points.size() > 0) - RenderLine(points.back(), m_stem_pos, 0xFFFF00FF); - - // Render the "stem" - auto ray = kp3d::GetRayFromCamera(sandbox->camera); - kp3d::Vec3 pos{5,0,0}; - float dist = 0.0f; - kp3d::Triangle tri0 = {{sandbox->map.grid_box[0], sandbox->map.grid_box[1], sandbox->map.grid_box[2]}, 0, 0}; - kp3d::Triangle tri1 = {{sandbox->map.grid_box[3], sandbox->map.grid_box[4], sandbox->map.grid_box[5]}, 0, 0}; - bool on_grid = kp3d::RayIntersectsTriangle(ray[0], ray[1], &tri0, pos) || kp3d::RayIntersectsTriangle(ray[0], ray[1], &tri1, pos); - pos.x = Align(pos.x, 1.0f); - pos.z = Align(pos.z, 1.0f); - RenderStem(pos); - m_stem_pos = pos; } void Editor::RenderStem(kp3d::Vec3 position) @@ -285,6 +197,142 @@ void Editor::UpdateModeBuild() } } +void Editor::RenderModeBuild() +{ + // Render the points we're drawing + if (points.size() > 1) + { + for (int i = 0; i < points.size() - 1; i++) + RenderLine(points[i], points[i + 1], 0xFF00FFFF); + } + if (points.size() > 0) + RenderLine(points.back(), m_stem_pos, 0xFFFF00FF); + + // Render the "stem" + auto ray = kp3d::GetRayFromCamera(sandbox->camera); + kp3d::Vec3 pos{5,0,0}; + float dist = 0.0f; + kp3d::Triangle tri0 = {{sandbox->map.grid_box[0], sandbox->map.grid_box[1], sandbox->map.grid_box[2]}, 0, 0}; + kp3d::Triangle tri1 = {{sandbox->map.grid_box[3], sandbox->map.grid_box[4], sandbox->map.grid_box[5]}, 0, 0}; + bool on_grid = kp3d::RayIntersectsTriangle(ray[0], ray[1], &tri0, pos) || kp3d::RayIntersectsTriangle(ray[0], ray[1], &tri1, pos); + pos.x = Align(pos.x, 1.0f); + pos.z = Align(pos.z, 1.0f); + RenderStem(pos); + m_stem_pos = pos; +} + +void Editor::UpdateModeNormal() +{ + using namespace kp3d; + + // Raycast through everything on the map + if (sandbox->IsMouseButtonDown(kp3d::MOUSE_BUTTON_LEFT)) + { + struct Target + { + Vec3 position; + float distance; + RenderBatch3D* b; + }; + std::vector targets; + for (RenderBatch3D& b : sandbox->map.GetMeshRef().GetBatchesRef()) + { + for (size_t i = 0; i < b.vertex_data.size(); i += 3) + { + Vec3 pos; + Triangle tri = { b.vertex_data[i].position, b.vertex_data[i + 1].position, b.vertex_data[i + 2].position }; + auto ray = GetRayFromCamera(sandbox->camera); + bool raycast = RayIntersectsTriangle(ray[0], ray[1], &tri, pos); + if (raycast) + { + float dist = sqrtf( + pow(pos.x - sandbox->camera.position.x, 2) + + pow(pos.y - sandbox->camera.position.y, 2) + + pow(pos.z - sandbox->camera.position.z, 2) + ); + targets.push_back({ pos, dist, &b }); + } + } + if (!targets.empty()) + { + std::sort(targets.begin(), targets.end(), [&](const Target& a, const Target& b) { return a.distance > b.distance; }); + const Target& target = targets.back(); + if (editor_hovered_batch.empty()) + { + if (std::find(editor_hovered_batch.begin(), editor_hovered_batch.end(), target.b) == editor_hovered_batch.end()) + editor_hovered_batch.push_back(target.b); + } + else + { + try + { + const auto& info = std::any_cast(kp3d::editor_hovered_batch[0]->userdata); + const auto& target_info = std::any_cast(target.b->userdata); + if (info.wall && target_info.wall) + { + if (std::find(editor_hovered_batch.begin(), editor_hovered_batch.end(), target.b) == editor_hovered_batch.end()) + editor_hovered_batch.push_back(target.b); + } + else if (info.flat && target_info.flat) + { + if (std::find(editor_hovered_batch.begin(), editor_hovered_batch.end(), target.b) == editor_hovered_batch.end()) + editor_hovered_batch.push_back(target.b); + } + } + catch (std::bad_any_cast& e) + { + KP3D_LOG_ERROR("Bad any cast: {}", e.what()); + } + } + } + else + { + // editor_hovered_batch = nullptr; + if (!sandbox->IsKeyDown(kp3d::KEY_LSHIFT)) + { + editor_hovered_batch.clear(); + } + } + } + sandbox->MouseButtonReset(kp3d::MOUSE_BUTTON_LEFT); + } + + if (!editor_hovered_batch.empty()) + { + try + { + const auto& info = std::any_cast(kp3d::editor_hovered_batch[0]->userdata); + if (info.wall) + { + // Find where this wall is in the sector graph. + // We need the following info: + // - The index of this wall and the one it's connected to (i.e. the wall whose end point is the start of this one) + // - The indices of any walls in neighboring sectors this one is connected to (e.g. portals) + for (const auto& sp: sandbox->map.sectors) + { + for (int i = 0; i < sp->walls.size(); i++) + { + const Wall& wall = sp->walls[i]; + const Wall& neighbor = sp->walls[(i - 1) % sp->walls.size()]; + if (&wall == info.wall) + { + + } + } + } + } + } + catch (std::bad_any_cast& e) + { + KP3D_LOG_ERROR("Bad any cast: {}", e.what()); + } + } +} + +void Editor::RenderModeNormal() +{ +} + void Editor::RenderUI() { // Menu bar diff --git a/Sandbox/src/Editor.h b/Sandbox/src/Editor.h index 07b2a7c..ef10220 100644 --- a/Sandbox/src/Editor.h +++ b/Sandbox/src/Editor.h @@ -9,7 +9,6 @@ enum EditMode { MODE_NORMAL, MODE_BUILD, - MODE_SECTOR_EDIT }; enum MaterialType @@ -33,9 +32,9 @@ public: void RenderStem(kp3d::Vec3 position); void UpdateModeBuild(); - void RenderModeBuild(); - void RenderModeSectorEdit(); + void UpdateModeNormal(); + void RenderModeNormal(); void RenderUI(); void RenderUIInfo();