/* * Copyright (c), Recep Aslantas. * * MIT License (MIT), http://opensource.org/licenses/MIT * Full license can be found in the LICENSE file */ /* Macros: GLM_MAT3_IDENTITY_INIT GLM_MAT3_ZERO_INIT GLM_MAT3_IDENTITY GLM_MAT3_ZERO glm_mat3_dup(mat, dest) Functions: CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest); CGLM_INLINE void glm_mat3_identity(mat3 mat); CGLM_INLINE void glm_mat3_identity_array(mat3 * restrict mat, size_t count); CGLM_INLINE void glm_mat3_zero(mat3 mat); CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest); CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest); CGLM_INLINE void glm_mat3_transpose(mat3 m); CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest); CGLM_INLINE float glm_mat3_trace(mat3 m); CGLM_INLINE void glm_mat3_quat(mat3 m, versor dest); CGLM_INLINE void glm_mat3_scale(mat3 m, float s); CGLM_INLINE float glm_mat3_det(mat3 mat); CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest); CGLM_INLINE void glm_mat3_swap_col(mat3 mat, int col1, int col2); CGLM_INLINE void glm_mat3_swap_row(mat3 mat, int row1, int row2); CGLM_INLINE float glm_mat3_rmc(vec3 r, mat3 m, vec3 c); */ #ifndef cglm_mat3_h #define cglm_mat3_h #include "common.h" #include "vec3.h" #ifdef CGLM_SSE_FP # include "simd/sse2/mat3.h" #endif #define GLM_MAT3_IDENTITY_INIT {{1.0f, 0.0f, 0.0f}, \ {0.0f, 1.0f, 0.0f}, \ {0.0f, 0.0f, 1.0f}} #define GLM_MAT3_ZERO_INIT {{0.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f}} /* for C only */ #define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT) #define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT) /* DEPRECATED! use _copy, _ucopy versions */ #define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest) /*! * @brief copy all members of [mat] to [dest] * * @param[in] mat source * @param[out] dest destination */ CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest) { dest[0][0] = mat[0][0]; dest[0][1] = mat[0][1]; dest[0][2] = mat[0][2]; dest[1][0] = mat[1][0]; dest[1][1] = mat[1][1]; dest[1][2] = mat[1][2]; dest[2][0] = mat[2][0]; dest[2][1] = mat[2][1]; dest[2][2] = mat[2][2]; } /*! * @brief make given matrix identity. It is identical with below, * but it is more easy to do that with this func especially for members * e.g. glm_mat3_identity(aStruct->aMatrix); * * @code * glm_mat3_copy(GLM_MAT3_IDENTITY, mat); // C only * * // or * mat3 mat = GLM_MAT3_IDENTITY_INIT; * @endcode * * @param[in, out] mat destination */ CGLM_INLINE void glm_mat3_identity(mat3 mat) { CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT; glm_mat3_copy(t, mat); } /*! * @brief make given matrix array's each element identity matrix * * @param[in, out] mat matrix array (must be aligned (16/32) * if alignment is not disabled) * * @param[in] count count of matrices */ CGLM_INLINE void glm_mat3_identity_array(mat3 * __restrict mat, size_t count) { CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT; size_t i; for (i = 0; i < count; i++) { glm_mat3_copy(t, mat[i]); } } /*! * @brief make given matrix zero. * * @param[in, out] mat matrix */ CGLM_INLINE void glm_mat3_zero(mat3 mat) { CGLM_ALIGN_MAT mat3 t = GLM_MAT3_ZERO_INIT; glm_mat3_copy(t, mat); } /*! * @brief multiply m1 and m2 to dest * * m1, m2 and dest matrices can be same matrix, it is possible to write this: * * @code * mat3 m = GLM_MAT3_IDENTITY_INIT; * glm_mat3_mul(m, m, m); * @endcode * * @param[in] m1 left matrix * @param[in] m2 right matrix * @param[out] dest destination matrix */ CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat3_mul_sse2(m1, m2, dest); #else float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2], b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2], b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2]; dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02; dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02; dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02; dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12; dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12; dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12; dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22; dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22; dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22; #endif } /*! * @brief transpose mat3 and store in dest * * source matrix will not be transposed unless dest is m * * @param[in] m matrix * @param[out] dest result */ CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest) { dest[0][0] = m[0][0]; dest[0][1] = m[1][0]; dest[0][2] = m[2][0]; dest[1][0] = m[0][1]; dest[1][1] = m[1][1]; dest[1][2] = m[2][1]; dest[2][0] = m[0][2]; dest[2][1] = m[1][2]; dest[2][2] = m[2][2]; } /*! * @brief tranpose mat3 and store result in same matrix * * @param[in, out] m source and dest */ CGLM_INLINE void glm_mat3_transpose(mat3 m) { CGLM_ALIGN_MAT mat3 tmp; tmp[0][1] = m[1][0]; tmp[0][2] = m[2][0]; tmp[1][0] = m[0][1]; tmp[1][2] = m[2][1]; tmp[2][0] = m[0][2]; tmp[2][1] = m[1][2]; m[0][1] = tmp[0][1]; m[0][2] = tmp[0][2]; m[1][0] = tmp[1][0]; m[1][2] = tmp[1][2]; m[2][0] = tmp[2][0]; m[2][1] = tmp[2][1]; } /*! * @brief multiply mat3 with vec3 (column vector) and store in dest vector * * @param[in] m mat3 (left) * @param[in] v vec3 (right, column vector) * @param[out] dest vec3 (result, column vector) */ CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) { vec3 res; res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2]; res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2]; res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2]; glm_vec3_copy(res, dest); } /*! * @brief trace of matrix * * sum of the elements on the main diagonal from upper left to the lower right * * @param[in] m matrix */ CGLM_INLINE float glm_mat3_trace(mat3 m) { return m[0][0] + m[1][1] + m[2][2]; } /*! * @brief convert mat3 to quaternion * * @param[in] m rotation matrix * @param[out] dest destination quaternion */ CGLM_INLINE void glm_mat3_quat(mat3 m, versor dest) { float trace, r, rinv; /* it seems using like m12 instead of m[1][2] causes extra instructions */ trace = m[0][0] + m[1][1] + m[2][2]; if (trace >= 0.0f) { r = sqrtf(1.0f + trace); rinv = 0.5f / r; dest[0] = rinv * (m[1][2] - m[2][1]); dest[1] = rinv * (m[2][0] - m[0][2]); dest[2] = rinv * (m[0][1] - m[1][0]); dest[3] = r * 0.5f; } else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) { r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]); rinv = 0.5f / r; dest[0] = r * 0.5f; dest[1] = rinv * (m[0][1] + m[1][0]); dest[2] = rinv * (m[0][2] + m[2][0]); dest[3] = rinv * (m[1][2] - m[2][1]); } else if (m[1][1] >= m[2][2]) { r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]); rinv = 0.5f / r; dest[0] = rinv * (m[0][1] + m[1][0]); dest[1] = r * 0.5f; dest[2] = rinv * (m[1][2] + m[2][1]); dest[3] = rinv * (m[2][0] - m[0][2]); } else { r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]); rinv = 0.5f / r; dest[0] = rinv * (m[0][2] + m[2][0]); dest[1] = rinv * (m[1][2] + m[2][1]); dest[2] = r * 0.5f; dest[3] = rinv * (m[0][1] - m[1][0]); } } /*! * @brief scale (multiply with scalar) matrix * * multiply matrix with scalar * * @param[in, out] m matrix * @param[in] s scalar */ CGLM_INLINE void glm_mat3_scale(mat3 m, float s) { m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; } /*! * @brief mat3 determinant * * @param[in] mat matrix * * @return determinant */ CGLM_INLINE float glm_mat3_det(mat3 mat) { float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[1][0], e = mat[1][1], f = mat[1][2], g = mat[2][0], h = mat[2][1], i = mat[2][2]; return a * (e * i - h * f) - d * (b * i - c * h) + g * (b * f - c * e); } /*! * @brief inverse mat3 and store in dest * * @param[in] mat matrix * @param[out] dest inverse matrix */ CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest) { float det; float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[1][0], e = mat[1][1], f = mat[1][2], g = mat[2][0], h = mat[2][1], i = mat[2][2]; dest[0][0] = e * i - f * h; dest[0][1] = -(b * i - h * c); dest[0][2] = b * f - e * c; dest[1][0] = -(d * i - g * f); dest[1][1] = a * i - c * g; dest[1][2] = -(a * f - d * c); dest[2][0] = d * h - g * e; dest[2][1] = -(a * h - g * b); dest[2][2] = a * e - b * d; det = 1.0f / (a * dest[0][0] + b * dest[1][0] + c * dest[2][0]); glm_mat3_scale(dest, det); } /*! * @brief swap two matrix columns * * @param[in,out] mat matrix * @param[in] col1 col1 * @param[in] col2 col2 */ CGLM_INLINE void glm_mat3_swap_col(mat3 mat, int col1, int col2) { vec3 tmp; glm_vec3_copy(mat[col1], tmp); glm_vec3_copy(mat[col2], mat[col1]); glm_vec3_copy(tmp, mat[col2]); } /*! * @brief swap two matrix rows * * @param[in,out] mat matrix * @param[in] row1 row1 * @param[in] row2 row2 */ CGLM_INLINE void glm_mat3_swap_row(mat3 mat, int row1, int row2) { vec3 tmp; tmp[0] = mat[0][row1]; tmp[1] = mat[1][row1]; tmp[2] = mat[2][row1]; mat[0][row1] = mat[0][row2]; mat[1][row1] = mat[1][row2]; mat[2][row1] = mat[2][row2]; mat[0][row2] = tmp[0]; mat[1][row2] = tmp[1]; mat[2][row2] = tmp[2]; } /*! * @brief helper for R (row vector) * M (matrix) * C (column vector) * * rmc stands for Row * Matrix * Column * * the result is scalar because R * M = Matrix1x3 (row vector), * then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar) * * @param[in] r row vector or matrix1x3 * @param[in] m matrix3x3 * @param[in] c column vector or matrix3x1 * * @return scalar value e.g. Matrix1x1 */ CGLM_INLINE float glm_mat3_rmc(vec3 r, mat3 m, vec3 c) { vec3 tmp; glm_mat3_mulv(m, c, tmp); return glm_vec3_dot(r, tmp); } #endif /* cglm_mat3_h */