/* * Copyright (c), Recep Aslantas. * * MIT License (MIT), http://opensource.org/licenses/MIT * Full license can be found in the LICENSE file */ /* Functions: CGLM_INLINE void glm_translate2d(mat3 m, vec2 v) CGLM_INLINE void glm_translate2d_to(mat3 m, vec2 v, mat3 dest) CGLM_INLINE void glm_translate2d_x(mat3 m, float x) CGLM_INLINE void glm_translate2d_y(mat3 m, float y) CGLM_INLINE void glm_translate2d_make(mat3 m, vec2 v) CGLM_INLINE void glm_scale2d_to(mat3 m, vec2 v, mat3 dest) CGLM_INLINE void glm_scale2d_make(mat3 m, vec2 v) CGLM_INLINE void glm_scale2d(mat3 m, vec2 v) CGLM_INLINE void glm_scale2d_uni(mat3 m, float s) CGLM_INLINE void glm_rotate2d_make(mat3 m, float angle) CGLM_INLINE void glm_rotate2d(mat3 m, float angle) CGLM_INLINE void glm_rotate2d_to(mat3 m, float angle, mat3 dest) */ #ifndef cglm_affine2d_h #define cglm_affine2d_h #include "common.h" #include "util.h" #include "vec2.h" #include "mat3.h" /*! * @brief translate existing 2d transform matrix by v vector * and stores result in same matrix * * @param[in, out] m affine transfrom * @param[in] v translate vector [x, y] */ CGLM_INLINE void glm_translate2d(mat3 m, vec2 v) { m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0]; m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1]; m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2]; } /*! * @brief translate existing 2d transform matrix by v vector * and store result in dest * * source matrix will remain same * * @param[in] m affine transfrom * @param[in] v translate vector [x, y] * @param[out] dest translated matrix */ CGLM_INLINE void glm_translate2d_to(mat3 m, vec2 v, mat3 dest) { glm_mat3_copy(m, dest); glm_translate2d(dest, v); } /*! * @brief translate existing 2d transform matrix by x factor * * @param[in, out] m affine transfrom * @param[in] x x factor */ CGLM_INLINE void glm_translate2d_x(mat3 m, float x) { m[2][0] = m[0][0] * x + m[2][0]; m[2][1] = m[0][1] * x + m[2][1]; m[2][2] = m[0][2] * x + m[2][2]; } /*! * @brief translate existing 2d transform matrix by y factor * * @param[in, out] m affine transfrom * @param[in] y y factor */ CGLM_INLINE void glm_translate2d_y(mat3 m, float y) { m[2][0] = m[1][0] * y + m[2][0]; m[2][1] = m[1][1] * y + m[2][1]; m[2][2] = m[1][2] * y + m[2][2]; } /*! * @brief creates NEW translate 2d transform matrix by v vector * * @param[out] m affine transfrom * @param[in] v translate vector [x, y] */ CGLM_INLINE void glm_translate2d_make(mat3 m, vec2 v) { glm_mat3_identity(m); m[2][0] = v[0]; m[2][1] = v[1]; } /*! * @brief scale existing 2d transform matrix by v vector * and store result in dest * * @param[in] m affine transfrom * @param[in] v scale vector [x, y] * @param[out] dest scaled matrix */ CGLM_INLINE void glm_scale2d_to(mat3 m, vec2 v, mat3 dest) { dest[0][0] = m[0][0] * v[0]; dest[0][1] = m[0][1] * v[0]; dest[0][2] = m[0][2] * v[0]; dest[1][0] = m[1][0] * v[1]; dest[1][1] = m[1][1] * v[1]; dest[1][2] = m[1][2] * v[1]; dest[2][0] = m[2][0]; dest[2][1] = m[2][1]; dest[2][2] = m[2][2]; } /*! * @brief creates NEW 2d scale matrix by v vector * * @param[out] m affine transfrom * @param[in] v scale vector [x, y] */ CGLM_INLINE void glm_scale2d_make(mat3 m, vec2 v) { glm_mat3_identity(m); m[0][0] = v[0]; m[1][1] = v[1]; } /*! * @brief scales existing 2d transform matrix by v vector * and stores result in same matrix * * @param[in, out] m affine transfrom * @param[in] v scale vector [x, y] */ CGLM_INLINE void glm_scale2d(mat3 m, vec2 v) { m[0][0] = m[0][0] * v[0]; m[0][1] = m[0][1] * v[0]; m[0][2] = m[0][2] * v[0]; m[1][0] = m[1][0] * v[1]; m[1][1] = m[1][1] * v[1]; m[1][2] = m[1][2] * v[1]; } /*! * @brief applies uniform scale to existing 2d transform matrix v = [s, s] * and stores result in same matrix * * @param[in, out] m affine transfrom * @param[in] s scale factor */ CGLM_INLINE void glm_scale2d_uni(mat3 m, float s) { m[0][0] = m[0][0] * s; m[0][1] = m[0][1] * s; m[0][2] = m[0][2] * s; m[1][0] = m[1][0] * s; m[1][1] = m[1][1] * s; m[1][2] = m[1][2] * s; } /*! * @brief creates NEW rotation matrix by angle around Z axis * * @param[out] m affine transfrom * @param[in] angle angle (radians) */ CGLM_INLINE void glm_rotate2d_make(mat3 m, float angle) { float c, s; s = sinf(angle); c = cosf(angle); m[0][0] = c; m[0][1] = s; m[0][2] = 0; m[1][0] = -s; m[1][1] = c; m[1][2] = 0; m[2][0] = 0.0f; m[2][1] = 0.0f; m[2][2] = 1.0f; } /*! * @brief rotate existing 2d transform matrix around Z axis by angle * and store result in same matrix * * @param[in, out] m affine transfrom * @param[in] angle angle (radians) */ CGLM_INLINE void glm_rotate2d(mat3 m, float angle) { float m00 = m[0][0], m10 = m[1][0], m01 = m[0][1], m11 = m[1][1], m02 = m[0][2], m12 = m[1][2]; float c, s; s = sinf(angle); c = cosf(angle); m[0][0] = m00 * c + m10 * s; m[0][1] = m01 * c + m11 * s; m[0][2] = m02 * c + m12 * s; m[1][0] = m00 * -s + m10 * c; m[1][1] = m01 * -s + m11 * c; m[1][2] = m02 * -s + m12 * c; } /*! * @brief rotate existing 2d transform matrix around Z axis by angle * and store result in dest * * @param[in] m affine transfrom * @param[in] angle angle (radians) * @param[out] dest destination */ CGLM_INLINE void glm_rotate2d_to(mat3 m, float angle, mat3 dest) { float m00 = m[0][0], m10 = m[1][0], m01 = m[0][1], m11 = m[1][1], m02 = m[0][2], m12 = m[1][2]; float c, s; s = sinf(angle); c = cosf(angle); dest[0][0] = m00 * c + m10 * s; dest[0][1] = m01 * c + m11 * s; dest[0][2] = m02 * c + m12 * s; dest[1][0] = m00 * -s + m10 * c; dest[1][1] = m01 * -s + m11 * c; dest[1][2] = m02 * -s + m12 * c; dest[2][0] = m[2][0]; dest[2][1] = m[2][1]; dest[2][2] = m[2][2]; } #endif /* cglm_affine2d_h */