/* * Copyright (c), Recep Aslantas. * * MIT License (MIT), http://opensource.org/licenses/MIT * Full license can be found in the LICENSE file */ /* Macros: GLM_VEC3_ONE_INIT GLM_VEC3_ZERO_INIT GLM_VEC3_ONE GLM_VEC3_ZERO GLM_YUP GLM_ZUP GLM_XUP Functions: CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest); CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest); CGLM_INLINE void glm_vec3_zero(vec3 v); CGLM_INLINE void glm_vec3_one(vec3 v); CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b); CGLM_INLINE float glm_vec3_norm2(vec3 v); CGLM_INLINE float glm_vec3_norm(vec3 v); CGLM_INLINE float glm_vec3_norm_one(vec3 v); CGLM_INLINE float glm_vec3_norm_inf(vec3 v); CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_adds(vec3 a, float s, vec3 dest); CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_subs(vec3 a, float s, vec3 dest); CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest); CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest); CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_divs(vec3 a, float s, vec3 dest); CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest); CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_flipsign(vec3 v); CGLM_INLINE void glm_vec3_flipsign_to(vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_negate(vec3 v); CGLM_INLINE void glm_vec3_inv(vec3 v); CGLM_INLINE void glm_vec3_inv_to(vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_normalize(vec3 v); CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 d); CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest); CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b); CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis); CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest); CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b); CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b); CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest); CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest); CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal); CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest); CGLM_INLINE void glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest); CGLM_INLINE void glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest); CGLM_INLINE void glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest); CGLM_INLINE void glm_vec3_step_uni(float edge, vec3 x, vec3 dest); CGLM_INLINE void glm_vec3_step(vec3 edge, vec3 x, vec3 dest); CGLM_INLINE void glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest); CGLM_INLINE void glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest); CGLM_INLINE void glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest); CGLM_INLINE void glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest); CGLM_INLINE void glm_vec3_swizzle(vec3 v, int mask, vec3 dest); Convenient: CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d); CGLM_INLINE float glm_dot(vec3 a, vec3 b); CGLM_INLINE void glm_normalize(vec3 v); CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest); DEPRECATED: glm_vec3_dup glm_vec3_flipsign glm_vec3_flipsign_to glm_vec3_inv glm_vec3_inv_to glm_vec3_mulv */ #ifndef cglm_vec3_h #define cglm_vec3_h #include "common.h" #include "vec4.h" #include "vec3-ext.h" #include "util.h" /* DEPRECATED! use _copy, _ucopy versions */ #define glm_vec3_dup(v, dest) glm_vec3_copy(v, dest) #define glm_vec3_flipsign(v) glm_vec3_negate(v) #define glm_vec3_flipsign_to(v, dest) glm_vec3_negate_to(v, dest) #define glm_vec3_inv(v) glm_vec3_negate(v) #define glm_vec3_inv_to(v, dest) glm_vec3_negate_to(v, dest) #define glm_vec3_mulv(a, b, d) glm_vec3_mul(a, b, d) #define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f} #define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f} #define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT) #define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT) #define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f}) #define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f}) #define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f}) #define GLM_FORWARD ((vec3){0.0f, 0.0f, -1.0f}) #define GLM_XXX GLM_SHUFFLE3(0, 0, 0) #define GLM_YYY GLM_SHUFFLE3(1, 1, 1) #define GLM_ZZZ GLM_SHUFFLE3(2, 2, 2) #define GLM_ZYX GLM_SHUFFLE3(0, 1, 2) /*! * @brief init vec3 using vec4 * * @param[in] v4 vector4 * @param[out] dest destination */ CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest) { dest[0] = v4[0]; dest[1] = v4[1]; dest[2] = v4[2]; } /*! * @brief copy all members of [a] to [dest] * * @param[in] a source * @param[out] dest destination */ CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest) { dest[0] = a[0]; dest[1] = a[1]; dest[2] = a[2]; } /*! * @brief make vector zero * * @param[in, out] v vector */ CGLM_INLINE void glm_vec3_zero(vec3 v) { v[0] = v[1] = v[2] = 0.0f; } /*! * @brief make vector one * * @param[in, out] v vector */ CGLM_INLINE void glm_vec3_one(vec3 v) { v[0] = v[1] = v[2] = 1.0f; } /*! * @brief vec3 dot product * * @param[in] a vector1 * @param[in] b vector2 * * @return dot product */ CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } /*! * @brief norm * norm (magnitude) of vec * * we can use this func instead of calling norm * norm, because it would call * sqrtf fuction twice but with this func we can avoid func call, maybe this is * not good name for this func * * @param[in] v vector * * @return norm * norm */ CGLM_INLINE float glm_vec3_norm2(vec3 v) { return glm_vec3_dot(v, v); } /*! * @brief euclidean norm (magnitude), also called L2 norm * this will give magnitude of vector in euclidean space * * @param[in] v vector * * @return norm */ CGLM_INLINE float glm_vec3_norm(vec3 v) { return sqrtf(glm_vec3_norm2(v)); } /*! * @brief L1 norm of vec3 * Also known as Manhattan Distance or Taxicab norm. * L1 Norm is the sum of the magnitudes of the vectors in a space. * It is calculated as the sum of the absolute values of the vector components. * In this norm, all the components of the vector are weighted equally. * * This computes: * R = |v[0]| + |v[1]| + |v[2]| * * @param[in] v vector * * @return L1 norm */ CGLM_INLINE float glm_vec3_norm_one(vec3 v) { vec3 t; glm_vec3_abs(v, t); return glm_vec3_hadd(t); } /*! * @brief infinity norm of vec3 * Also known as Maximum norm. * Infinity Norm is the largest magnitude among each element of a vector. * It is calculated as the maximum of the absolute values of the vector components. * * This computes: * inf norm = max(|v[0]|, |v[1]|, |v[2]|) * * @param[in] v vector * * @return infinity norm */ CGLM_INLINE float glm_vec3_norm_inf(vec3 v) { vec3 t; glm_vec3_abs(v, t); return glm_vec3_max(t); } /*! * @brief add a vector to b vector store result in dest * * @param[in] a vector1 * @param[in] b vector2 * @param[out] dest destination vector */ CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest) { dest[0] = a[0] + b[0]; dest[1] = a[1] + b[1]; dest[2] = a[2] + b[2]; } /*! * @brief add scalar to v vector store result in dest (d = v + s) * * @param[in] v vector * @param[in] s scalar * @param[out] dest destination vector */ CGLM_INLINE void glm_vec3_adds(vec3 v, float s, vec3 dest) { dest[0] = v[0] + s; dest[1] = v[1] + s; dest[2] = v[2] + s; } /*! * @brief subtract b vector from a vector store result in dest * * @param[in] a vector1 * @param[in] b vector2 * @param[out] dest destination vector */ CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest) { dest[0] = a[0] - b[0]; dest[1] = a[1] - b[1]; dest[2] = a[2] - b[2]; } /*! * @brief subtract scalar from v vector store result in dest (d = v - s) * * @param[in] v vector * @param[in] s scalar * @param[out] dest destination vector */ CGLM_INLINE void glm_vec3_subs(vec3 v, float s, vec3 dest) { dest[0] = v[0] - s; dest[1] = v[1] - s; dest[2] = v[2] - s; } /*! * @brief multiply two vector (component-wise multiplication) * * @param a vector1 * @param b vector2 * @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2]) */ CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest) { dest[0] = a[0] * b[0]; dest[1] = a[1] * b[1]; dest[2] = a[2] * b[2]; } /*! * @brief multiply/scale vec3 vector with scalar: result = v * s * * @param[in] v vector * @param[in] s scalar * @param[out] dest destination vector */ CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest) { dest[0] = v[0] * s; dest[1] = v[1] * s; dest[2] = v[2] * s; } /*! * @brief make vec3 vector scale as specified: result = unit(v) * s * * @param[in] v vector * @param[in] s scalar * @param[out] dest destination vector */ CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest) { float norm; norm = glm_vec3_norm(v); if (norm == 0.0f) { glm_vec3_zero(dest); return; } glm_vec3_scale(v, s / norm, dest); } /*! * @brief div vector with another component-wise division: d = a / b * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2]) */ CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest) { dest[0] = a[0] / b[0]; dest[1] = a[1] / b[1]; dest[2] = a[2] / b[2]; } /*! * @brief div vector with scalar: d = v / s * * @param[in] v vector * @param[in] s scalar * @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s) */ CGLM_INLINE void glm_vec3_divs(vec3 v, float s, vec3 dest) { dest[0] = v[0] / s; dest[1] = v[1] / s; dest[2] = v[2] / s; } /*! * @brief add two vectors and add result to sum * * it applies += operator so dest must be initialized * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest dest += (a + b) */ CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) { dest[0] += a[0] + b[0]; dest[1] += a[1] + b[1]; dest[2] += a[2] + b[2]; } /*! * @brief sub two vectors and add result to dest * * it applies += operator so dest must be initialized * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest dest += (a + b) */ CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) { dest[0] += a[0] - b[0]; dest[1] += a[1] - b[1]; dest[2] += a[2] - b[2]; } /*! * @brief mul two vectors and add result to dest * * it applies += operator so dest must be initialized * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest dest += (a * b) */ CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) { dest[0] += a[0] * b[0]; dest[1] += a[1] * b[1]; dest[2] += a[2] * b[2]; } /*! * @brief mul vector with scalar and add result to sum * * it applies += operator so dest must be initialized * * @param[in] a vector * @param[in] s scalar * @param[out] dest dest += (a * b) */ CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest) { dest[0] += a[0] * s; dest[1] += a[1] * s; dest[2] += a[2] * s; } /*! * @brief add max of two vector to result/dest * * it applies += operator so dest must be initialized * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest dest += max(a, b) */ CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) { dest[0] += glm_max(a[0], b[0]); dest[1] += glm_max(a[1], b[1]); dest[2] += glm_max(a[2], b[2]); } /*! * @brief add min of two vector to result/dest * * it applies += operator so dest must be initialized * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest dest += min(a, b) */ CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) { dest[0] += glm_min(a[0], b[0]); dest[1] += glm_min(a[1], b[1]); dest[2] += glm_min(a[2], b[2]); } /*! * @brief negate vector components and store result in dest * * @param[in] v vector * @param[out] dest result vector */ CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest) { dest[0] = -v[0]; dest[1] = -v[1]; dest[2] = -v[2]; } /*! * @brief negate vector components * * @param[in, out] v vector */ CGLM_INLINE void glm_vec3_negate(vec3 v) { glm_vec3_negate_to(v, v); } /*! * @brief normalize vec3 and store result in same vec * * @param[in, out] v vector */ CGLM_INLINE void glm_vec3_normalize(vec3 v) { float norm; norm = glm_vec3_norm(v); if (norm == 0.0f) { v[0] = v[1] = v[2] = 0.0f; return; } glm_vec3_scale(v, 1.0f / norm, v); } /*! * @brief normalize vec3 to dest * * @param[in] v source * @param[out] dest destination */ CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest) { float norm; norm = glm_vec3_norm(v); if (norm == 0.0f) { glm_vec3_zero(dest); return; } glm_vec3_scale(v, 1.0f / norm, dest); } /*! * @brief cross product of two vector (RH) * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 dest) { /* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */ dest[0] = a[1] * b[2] - a[2] * b[1]; dest[1] = a[2] * b[0] - a[0] * b[2]; dest[2] = a[0] * b[1] - a[1] * b[0]; } /*! * @brief cross product of two vector (RH) and normalize the result * * @param[in] a vector 1 * @param[in] b vector 2 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) { glm_vec3_cross(a, b, dest); glm_vec3_normalize(dest); } /*! * @brief angle betwen two vector * * @param[in] a vector1 * @param[in] b vector2 * * @return angle as radians */ CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b) { float norm, dot; /* maybe compiler generate approximation instruction (rcp) */ norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b)); dot = glm_vec3_dot(a, b) * norm; if (dot > 1.0f) return 0.0f; else if (dot < -1.0f) return CGLM_PI; return acosf(dot); } /*! * @brief rotate vec3 around axis by angle using Rodrigues' rotation formula * * @param[in, out] v vector * @param[in] axis axis vector (must be unit vector) * @param[in] angle angle by radians */ CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis) { vec3 v1, v2, k; float c, s; c = cosf(angle); s = sinf(angle); glm_vec3_normalize_to(axis, k); /* Right Hand, Rodrigues' rotation formula: v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t)) */ glm_vec3_scale(v, c, v1); glm_vec3_cross(k, v, v2); glm_vec3_scale(v2, s, v2); glm_vec3_add(v1, v2, v1); glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2); glm_vec3_add(v1, v2, v); } /*! * @brief apply rotation matrix to vector * * matrix format should be (no perspective): * a b c x * e f g y * i j k z * 0 0 0 w * * @param[in] m affine matrix or rot matrix * @param[in] v vector * @param[out] dest rotated vector */ CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) { vec4 x, y, z, res; glm_vec4_normalize_to(m[0], x); glm_vec4_normalize_to(m[1], y); glm_vec4_normalize_to(m[2], z); glm_vec4_scale(x, v[0], res); glm_vec4_muladds(y, v[1], res); glm_vec4_muladds(z, v[2], res); glm_vec3(res, dest); } /*! * @brief apply rotation matrix to vector * * @param[in] m affine matrix or rot matrix * @param[in] v vector * @param[out] dest rotated vector */ CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) { vec4 res, x, y, z; glm_vec4(m[0], 0.0f, x); glm_vec4(m[1], 0.0f, y); glm_vec4(m[2], 0.0f, z); glm_vec4_normalize(x); glm_vec4_normalize(y); glm_vec4_normalize(z); glm_vec4_scale(x, v[0], res); glm_vec4_muladds(y, v[1], res); glm_vec4_muladds(z, v[2], res); glm_vec3(res, dest); } /*! * @brief project a vector onto b vector * * @param[in] a vector1 * @param[in] b vector2 * @param[out] dest projected vector */ CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest) { glm_vec3_scale(b, glm_vec3_dot(a, b) / glm_vec3_norm2(b), dest); } /** * @brief find center point of two vector * * @param[in] a vector1 * @param[in] b vector2 * @param[out] dest center point */ CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest) { glm_vec3_add(a, b, dest); glm_vec3_scale(dest, 0.5f, dest); } /** * @brief squared distance between two vectors * * @param[in] a vector1 * @param[in] b vector2 * @return returns squared distance (distance * distance) */ CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b) { return glm_pow2(a[0] - b[0]) + glm_pow2(a[1] - b[1]) + glm_pow2(a[2] - b[2]); } /** * @brief distance between two vectors * * @param[in] a vector1 * @param[in] b vector2 * @return returns distance */ CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b) { return sqrtf(glm_vec3_distance2(a, b)); } /*! * @brief max values of vectors * * @param[in] a vector1 * @param[in] b vector2 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) { dest[0] = glm_max(a[0], b[0]); dest[1] = glm_max(a[1], b[1]); dest[2] = glm_max(a[2], b[2]); } /*! * @brief min values of vectors * * @param[in] a vector1 * @param[in] b vector2 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest) { dest[0] = glm_min(a[0], b[0]); dest[1] = glm_min(a[1], b[1]); dest[2] = glm_min(a[2], b[2]); } /*! * @brief possible orthogonal/perpendicular vector * * @param[in] v vector * @param[out] dest orthogonal/perpendicular vector */ CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest) { dest[0] = v[1] - v[2]; dest[1] = v[2] - v[0]; dest[2] = v[0] - v[1]; } /*! * @brief clamp vector's individual members between min and max values * * @param[in, out] v vector * @param[in] minVal minimum value * @param[in] maxVal maximum value */ CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal) { v[0] = glm_clamp(v[0], minVal, maxVal); v[1] = glm_clamp(v[1], minVal, maxVal); v[2] = glm_clamp(v[2], minVal, maxVal); } /*! * @brief linear interpolation between two vectors * * formula: from + s * (to - from) * * @param[in] from from value * @param[in] to to value * @param[in] t interpolant (amount) * @param[out] dest destination */ CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) { vec3 s, v; /* from + s * (to - from) */ glm_vec3_broadcast(t, s); glm_vec3_sub(to, from, v); glm_vec3_mul(s, v, v); glm_vec3_add(from, v, dest); } /*! * @brief linear interpolation between two vectors (clamped) * * formula: from + s * (to - from) * * @param[in] from from value * @param[in] to to value * @param[in] t interpolant (amount) clamped between 0 and 1 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest) { glm_vec3_lerp(from, to, glm_clamp_zo(t), dest); } /*! * @brief linear interpolation between two vectors * * formula: from + s * (to - from) * * @param[in] from from value * @param[in] to to value * @param[in] t interpolant (amount) * @param[out] dest destination */ CGLM_INLINE void glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest) { glm_vec3_lerp(from, to, t, dest); } /*! * @brief linear interpolation between two vectors (clamped) * * formula: from + s * (to - from) * * @param[in] from from value * @param[in] to to value * @param[in] t interpolant (amount) clamped between 0 and 1 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest) { glm_vec3_lerpc(from, to, t, dest); } /*! * @brief threshold function (unidimensional) * * @param[in] edge threshold * @param[in] x value to test against threshold * @param[out] dest destination */ CGLM_INLINE void glm_vec3_step_uni(float edge, vec3 x, vec3 dest) { dest[0] = glm_step(edge, x[0]); dest[1] = glm_step(edge, x[1]); dest[2] = glm_step(edge, x[2]); } /*! * @brief threshold function * * @param[in] edge threshold * @param[in] x value to test against threshold * @param[out] dest destination */ CGLM_INLINE void glm_vec3_step(vec3 edge, vec3 x, vec3 dest) { dest[0] = glm_step(edge[0], x[0]); dest[1] = glm_step(edge[1], x[1]); dest[2] = glm_step(edge[2], x[2]); } /*! * @brief threshold function with a smooth transition (unidimensional) * * @param[in] edge0 low threshold * @param[in] edge1 high threshold * @param[in] x value to test against threshold * @param[out] dest destination */ CGLM_INLINE void glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest) { dest[0] = glm_smoothstep(edge0, edge1, x[0]); dest[1] = glm_smoothstep(edge0, edge1, x[1]); dest[2] = glm_smoothstep(edge0, edge1, x[2]); } /*! * @brief threshold function with a smooth transition * * @param[in] edge0 low threshold * @param[in] edge1 high threshold * @param[in] x value to test against threshold * @param[out] dest destination */ CGLM_INLINE void glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest) { dest[0] = glm_smoothstep(edge0[0], edge1[0], x[0]); dest[1] = glm_smoothstep(edge0[1], edge1[1], x[1]); dest[2] = glm_smoothstep(edge0[2], edge1[2], x[2]); } /*! * @brief smooth Hermite interpolation between two vectors * * formula: from + s * (to - from) * * @param[in] from from value * @param[in] to to value * @param[in] t interpolant (amount) * @param[out] dest destination */ CGLM_INLINE void glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest) { vec3 s, v; /* from + s * (to - from) */ glm_vec3_broadcast(glm_smooth(t), s); glm_vec3_sub(to, from, v); glm_vec3_mul(s, v, v); glm_vec3_add(from, v, dest); } /*! * @brief smooth Hermite interpolation between two vectors (clamped) * * formula: from + s * (to - from) * * @param[in] from from value * @param[in] to to value * @param[in] t interpolant (amount) clamped between 0 and 1 * @param[out] dest destination */ CGLM_INLINE void glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest) { glm_vec3_smoothinterp(from, to, glm_clamp_zo(t), dest); } /*! * @brief swizzle vector components * * you can use existin masks e.g. GLM_XXX, GLM_ZYX * * @param[in] v source * @param[in] mask mask * @param[out] dest destination */ CGLM_INLINE void glm_vec3_swizzle(vec3 v, int mask, vec3 dest) { vec3 t; t[0] = v[(mask & (3 << 0))]; t[1] = v[(mask & (3 << 2)) >> 2]; t[2] = v[(mask & (3 << 4)) >> 4]; glm_vec3_copy(t, dest); } /*! * @brief vec3 cross product * * this is just convenient wrapper * * @param[in] a source 1 * @param[in] b source 2 * @param[out] d destination */ CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d) { glm_vec3_cross(a, b, d); } /*! * @brief vec3 dot product * * this is just convenient wrapper * * @param[in] a vector1 * @param[in] b vector2 * * @return dot product */ CGLM_INLINE float glm_dot(vec3 a, vec3 b) { return glm_vec3_dot(a, b); } /*! * @brief normalize vec3 and store result in same vec * * this is just convenient wrapper * * @param[in, out] v vector */ CGLM_INLINE void glm_normalize(vec3 v) { glm_vec3_normalize(v); } /*! * @brief normalize vec3 to dest * * this is just convenient wrapper * * @param[in] v source * @param[out] dest destination */ CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest) { glm_vec3_normalize_to(v, dest); } #endif /* cglm_vec3_h */