/* * Copyright (c), Recep Aslantas. * * MIT License (MIT), http://opensource.org/licenses/MIT * Full license can be found in the LICENSE file */ /*! * Most of functions in this header are optimized manually with SIMD * if available. You dont need to call/incude SIMD headers manually */ /* Macros: GLM_MAT4_IDENTITY_INIT GLM_MAT4_ZERO_INIT GLM_MAT4_IDENTITY GLM_MAT4_ZERO Functions: CGLM_INLINE void glm_mat4_ucopy(mat4 mat, mat4 dest); CGLM_INLINE void glm_mat4_copy(mat4 mat, mat4 dest); CGLM_INLINE void glm_mat4_identity(mat4 mat); CGLM_INLINE void glm_mat4_identity_array(mat4 * restrict mat, size_t count); CGLM_INLINE void glm_mat4_zero(mat4 mat); CGLM_INLINE void glm_mat4_pick3(mat4 mat, mat3 dest); CGLM_INLINE void glm_mat4_pick3t(mat4 mat, mat3 dest); CGLM_INLINE void glm_mat4_ins3(mat3 mat, mat4 dest); CGLM_INLINE void glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest); CGLM_INLINE void glm_mat4_mulN(mat4 *matrices[], int len, mat4 dest); CGLM_INLINE void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest); CGLM_INLINE void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest); CGLM_INLINE float glm_mat4_trace(mat4 m); CGLM_INLINE float glm_mat4_trace3(mat4 m); CGLM_INLINE void glm_mat4_quat(mat4 m, versor dest) ; CGLM_INLINE void glm_mat4_transpose_to(mat4 m, mat4 dest); CGLM_INLINE void glm_mat4_transpose(mat4 m); CGLM_INLINE void glm_mat4_scale_p(mat4 m, float s); CGLM_INLINE void glm_mat4_scale(mat4 m, float s); CGLM_INLINE float glm_mat4_det(mat4 mat); CGLM_INLINE void glm_mat4_inv(mat4 mat, mat4 dest); CGLM_INLINE void glm_mat4_inv_fast(mat4 mat, mat4 dest); CGLM_INLINE void glm_mat4_swap_col(mat4 mat, int col1, int col2); CGLM_INLINE void glm_mat4_swap_row(mat4 mat, int row1, int row2); CGLM_INLINE float glm_mat4_rmc(vec4 r, mat4 m, vec4 c); */ #ifndef cglm_mat_h #define cglm_mat_h #include "common.h" #include "vec4.h" #include "vec3.h" #ifdef CGLM_SSE_FP # include "simd/sse2/mat4.h" #endif #ifdef CGLM_AVX_FP # include "simd/avx/mat4.h" #endif #ifdef CGLM_NEON_FP # include "simd/neon/mat4.h" #endif #ifdef DEBUG # include #endif #define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \ {0.0f, 1.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 1.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f, 1.0f}} #define GLM_MAT4_ZERO_INIT {{0.0f, 0.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f, 0.0f}} /* for C only */ #define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT) #define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT) /* DEPRECATED! use _copy, _ucopy versions */ #define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest) #define glm_mat4_dup(mat, dest) glm_mat4_copy(mat, dest) /* DEPRECATED! default is precise now. */ #define glm_mat4_inv_precise(mat, dest) glm_mat4_inv(mat, dest) /*! * @brief copy all members of [mat] to [dest] * * matrix may not be aligned, u stands for unaligned, this may be useful when * copying a matrix from external source e.g. asset importer... * * @param[in] mat source * @param[out] dest destination */ CGLM_INLINE void glm_mat4_ucopy(mat4 mat, mat4 dest) { dest[0][0] = mat[0][0]; dest[1][0] = mat[1][0]; dest[0][1] = mat[0][1]; dest[1][1] = mat[1][1]; dest[0][2] = mat[0][2]; dest[1][2] = mat[1][2]; dest[0][3] = mat[0][3]; dest[1][3] = mat[1][3]; dest[2][0] = mat[2][0]; dest[3][0] = mat[3][0]; dest[2][1] = mat[2][1]; dest[3][1] = mat[3][1]; dest[2][2] = mat[2][2]; dest[3][2] = mat[3][2]; dest[2][3] = mat[2][3]; dest[3][3] = mat[3][3]; } /*! * @brief copy all members of [mat] to [dest] * * @param[in] mat source * @param[out] dest destination */ CGLM_INLINE void glm_mat4_copy(mat4 mat, mat4 dest) { #ifdef __AVX__ glmm_store256(dest[0], glmm_load256(mat[0])); glmm_store256(dest[2], glmm_load256(mat[2])); #elif defined( __SSE__ ) || defined( __SSE2__ ) glmm_store(dest[0], glmm_load(mat[0])); glmm_store(dest[1], glmm_load(mat[1])); glmm_store(dest[2], glmm_load(mat[2])); glmm_store(dest[3], glmm_load(mat[3])); #elif defined(CGLM_NEON_FP) vst1q_f32(dest[0], vld1q_f32(mat[0])); vst1q_f32(dest[1], vld1q_f32(mat[1])); vst1q_f32(dest[2], vld1q_f32(mat[2])); vst1q_f32(dest[3], vld1q_f32(mat[3])); #else glm_mat4_ucopy(mat, dest); #endif } /*! * @brief make given matrix identity. It is identical with below, * but it is more easy to do that with this func especially for members * e.g. glm_mat4_identity(aStruct->aMatrix); * * @code * glm_mat4_copy(GLM_MAT4_IDENTITY, mat); // C only * * // or * mat4 mat = GLM_MAT4_IDENTITY_INIT; * @endcode * * @param[in, out] mat destination */ CGLM_INLINE void glm_mat4_identity(mat4 mat) { CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT; glm_mat4_copy(t, mat); } /*! * @brief make given matrix array's each element identity matrix * * @param[in, out] mat matrix array (must be aligned (16/32) * if alignment is not disabled) * * @param[in] count count of matrices */ CGLM_INLINE void glm_mat4_identity_array(mat4 * __restrict mat, size_t count) { CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT; size_t i; for (i = 0; i < count; i++) { glm_mat4_copy(t, mat[i]); } } /*! * @brief make given matrix zero. * * @param[in, out] mat matrix */ CGLM_INLINE void glm_mat4_zero(mat4 mat) { CGLM_ALIGN_MAT mat4 t = GLM_MAT4_ZERO_INIT; glm_mat4_copy(t, mat); } /*! * @brief copy upper-left of mat4 to mat3 * * @param[in] mat source * @param[out] dest destination */ CGLM_INLINE void glm_mat4_pick3(mat4 mat, mat3 dest) { dest[0][0] = mat[0][0]; dest[0][1] = mat[0][1]; dest[0][2] = mat[0][2]; dest[1][0] = mat[1][0]; dest[1][1] = mat[1][1]; dest[1][2] = mat[1][2]; dest[2][0] = mat[2][0]; dest[2][1] = mat[2][1]; dest[2][2] = mat[2][2]; } /*! * @brief copy upper-left of mat4 to mat3 (transposed) * * the postfix t stands for transpose * * @param[in] mat source * @param[out] dest destination */ CGLM_INLINE void glm_mat4_pick3t(mat4 mat, mat3 dest) { dest[0][0] = mat[0][0]; dest[0][1] = mat[1][0]; dest[0][2] = mat[2][0]; dest[1][0] = mat[0][1]; dest[1][1] = mat[1][1]; dest[1][2] = mat[2][1]; dest[2][0] = mat[0][2]; dest[2][1] = mat[1][2]; dest[2][2] = mat[2][2]; } /*! * @brief copy mat3 to mat4's upper-left * * @param[in] mat source * @param[out] dest destination */ CGLM_INLINE void glm_mat4_ins3(mat3 mat, mat4 dest) { dest[0][0] = mat[0][0]; dest[0][1] = mat[0][1]; dest[0][2] = mat[0][2]; dest[1][0] = mat[1][0]; dest[1][1] = mat[1][1]; dest[1][2] = mat[1][2]; dest[2][0] = mat[2][0]; dest[2][1] = mat[2][1]; dest[2][2] = mat[2][2]; } /*! * @brief multiply m1 and m2 to dest * * m1, m2 and dest matrices can be same matrix, it is possible to write this: * * @code * mat4 m = GLM_MAT4_IDENTITY_INIT; * glm_mat4_mul(m, m, m); * @endcode * * @param[in] m1 left matrix * @param[in] m2 right matrix * @param[out] dest destination matrix */ CGLM_INLINE void glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) { #ifdef __AVX__ glm_mat4_mul_avx(m1, m2, dest); #elif defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_mul_sse2(m1, m2, dest); #elif defined(CGLM_NEON_FP) glm_mat4_mul_neon(m1, m2, dest); #else float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3], a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3], a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3], a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3], b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2], b03 = m2[0][3], b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2], b13 = m2[1][3], b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2], b23 = m2[2][3], b30 = m2[3][0], b31 = m2[3][1], b32 = m2[3][2], b33 = m2[3][3]; dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03; dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03; dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03; dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03; dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13; dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13; dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13; dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13; dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23; dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23; dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23; dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23; dest[3][0] = a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33; dest[3][1] = a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33; dest[3][2] = a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33; dest[3][3] = a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33; #endif } /*! * @brief mupliply N mat4 matrices and store result in dest * * this function lets you multiply multiple (more than two or more...) matrices *

multiplication will be done in loop, this may reduce instructions * size but if len is too small then compiler may unroll whole loop, * usage: * @code * mat m1, m2, m3, m4, res; * * glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4, res); * @endcode * * @warning matrices parameter is pointer array not mat4 array! * * @param[in] matrices mat4 * array * @param[in] len matrices count * @param[out] dest result */ CGLM_INLINE void glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) { uint32_t i; #ifdef DEBUG assert(len > 1 && "there must be least 2 matrices to go!"); #endif glm_mat4_mul(*matrices[0], *matrices[1], dest); for (i = 2; i < len; i++) glm_mat4_mul(dest, *matrices[i], dest); } /*! * @brief multiply mat4 with vec4 (column vector) and store in dest vector * * @param[in] m mat4 (left) * @param[in] v vec4 (right, column vector) * @param[out] dest vec4 (result, column vector) */ CGLM_INLINE void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_mulv_sse2(m, v, dest); #elif defined(CGLM_NEON_FP) glm_mat4_mulv_neon(m, v, dest); #else vec4 res; res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3]; res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3]; res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3]; res[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3]; glm_vec4_copy(res, dest); #endif } /*! * @brief trace of matrix * * sum of the elements on the main diagonal from upper left to the lower right * * @param[in] m matrix */ CGLM_INLINE float glm_mat4_trace(mat4 m) { return m[0][0] + m[1][1] + m[2][2] + m[3][3]; } /*! * @brief trace of matrix (rotation part) * * sum of the elements on the main diagonal from upper left to the lower right * * @param[in] m matrix */ CGLM_INLINE float glm_mat4_trace3(mat4 m) { return m[0][0] + m[1][1] + m[2][2]; } /*! * @brief convert mat4's rotation part to quaternion * * @param[in] m affine matrix * @param[out] dest destination quaternion */ CGLM_INLINE void glm_mat4_quat(mat4 m, versor dest) { float trace, r, rinv; /* it seems using like m12 instead of m[1][2] causes extra instructions */ trace = m[0][0] + m[1][1] + m[2][2]; if (trace >= 0.0f) { r = sqrtf(1.0f + trace); rinv = 0.5f / r; dest[0] = rinv * (m[1][2] - m[2][1]); dest[1] = rinv * (m[2][0] - m[0][2]); dest[2] = rinv * (m[0][1] - m[1][0]); dest[3] = r * 0.5f; } else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) { r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]); rinv = 0.5f / r; dest[0] = r * 0.5f; dest[1] = rinv * (m[0][1] + m[1][0]); dest[2] = rinv * (m[0][2] + m[2][0]); dest[3] = rinv * (m[1][2] - m[2][1]); } else if (m[1][1] >= m[2][2]) { r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]); rinv = 0.5f / r; dest[0] = rinv * (m[0][1] + m[1][0]); dest[1] = r * 0.5f; dest[2] = rinv * (m[1][2] + m[2][1]); dest[3] = rinv * (m[2][0] - m[0][2]); } else { r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]); rinv = 0.5f / r; dest[0] = rinv * (m[0][2] + m[2][0]); dest[1] = rinv * (m[1][2] + m[2][1]); dest[2] = r * 0.5f; dest[3] = rinv * (m[0][1] - m[1][0]); } } /*! * @brief multiply vector with mat4 * * actually the result is vec4, after multiplication the last component * is trimmed. if you need it don't use this func. * * @param[in] m mat4(affine transform) * @param[in] v vec3 * @param[in] last 4th item to make it vec4 * @param[out] dest result vector (vec3) */ CGLM_INLINE void glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) { vec4 res; glm_vec4(v, last, res); glm_mat4_mulv(m, res, res); glm_vec3(res, dest); } /*! * @brief transpose mat4 and store in dest * * source matrix will not be transposed unless dest is m * * @param[in] m matrix * @param[out] dest result */ CGLM_INLINE void glm_mat4_transpose_to(mat4 m, mat4 dest) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_transp_sse2(m, dest); #elif defined(CGLM_NEON_FP) glm_mat4_transp_neon(m, dest); #else dest[0][0] = m[0][0]; dest[1][0] = m[0][1]; dest[0][1] = m[1][0]; dest[1][1] = m[1][1]; dest[0][2] = m[2][0]; dest[1][2] = m[2][1]; dest[0][3] = m[3][0]; dest[1][3] = m[3][1]; dest[2][0] = m[0][2]; dest[3][0] = m[0][3]; dest[2][1] = m[1][2]; dest[3][1] = m[1][3]; dest[2][2] = m[2][2]; dest[3][2] = m[2][3]; dest[2][3] = m[3][2]; dest[3][3] = m[3][3]; #endif } /*! * @brief tranpose mat4 and store result in same matrix * * @param[in, out] m source and dest */ CGLM_INLINE void glm_mat4_transpose(mat4 m) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_transp_sse2(m, m); #elif defined(CGLM_NEON_FP) glm_mat4_transp_neon(m, m); #else mat4 d; glm_mat4_transpose_to(m, d); glm_mat4_ucopy(d, m); #endif } /*! * @brief scale (multiply with scalar) matrix without simd optimization * * multiply matrix with scalar * * @param[in, out] m matrix * @param[in] s scalar */ CGLM_INLINE void glm_mat4_scale_p(mat4 m, float s) { m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; m[0][3] *= s; m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; m[1][3] *= s; m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; m[2][3] *= s; m[3][0] *= s; m[3][1] *= s; m[3][2] *= s; m[3][3] *= s; } /*! * @brief scale (multiply with scalar) matrix * * multiply matrix with scalar * * @param[in, out] m matrix * @param[in] s scalar */ CGLM_INLINE void glm_mat4_scale(mat4 m, float s) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_scale_sse2(m, s); #elif defined(CGLM_NEON_FP) glm_mat4_scale_neon(m, s); #else glm_mat4_scale_p(m, s); #endif } /*! * @brief mat4 determinant * * @param[in] mat matrix * * @return determinant */ CGLM_INLINE float glm_mat4_det(mat4 mat) { #if defined( __SSE__ ) || defined( __SSE2__ ) return glm_mat4_det_sse2(mat); #else /* [square] det(A) = det(At) */ float t[6]; float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3], e = mat[1][0], f = mat[1][1], g = mat[1][2], h = mat[1][3], i = mat[2][0], j = mat[2][1], k = mat[2][2], l = mat[2][3], m = mat[3][0], n = mat[3][1], o = mat[3][2], p = mat[3][3]; t[0] = k * p - o * l; t[1] = j * p - n * l; t[2] = j * o - n * k; t[3] = i * p - m * l; t[4] = i * o - m * k; t[5] = i * n - m * j; return a * (f * t[0] - g * t[1] + h * t[2]) - b * (e * t[0] - g * t[3] + h * t[4]) + c * (e * t[1] - f * t[3] + h * t[5]) - d * (e * t[2] - f * t[4] + g * t[5]); #endif } /*! * @brief inverse mat4 and store in dest * * @param[in] mat matrix * @param[out] dest inverse matrix */ CGLM_INLINE void glm_mat4_inv(mat4 mat, mat4 dest) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_inv_sse2(mat, dest); #else float t[6]; float det; float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3], e = mat[1][0], f = mat[1][1], g = mat[1][2], h = mat[1][3], i = mat[2][0], j = mat[2][1], k = mat[2][2], l = mat[2][3], m = mat[3][0], n = mat[3][1], o = mat[3][2], p = mat[3][3]; t[0] = k * p - o * l; t[1] = j * p - n * l; t[2] = j * o - n * k; t[3] = i * p - m * l; t[4] = i * o - m * k; t[5] = i * n - m * j; dest[0][0] = f * t[0] - g * t[1] + h * t[2]; dest[1][0] =-(e * t[0] - g * t[3] + h * t[4]); dest[2][0] = e * t[1] - f * t[3] + h * t[5]; dest[3][0] =-(e * t[2] - f * t[4] + g * t[5]); dest[0][1] =-(b * t[0] - c * t[1] + d * t[2]); dest[1][1] = a * t[0] - c * t[3] + d * t[4]; dest[2][1] =-(a * t[1] - b * t[3] + d * t[5]); dest[3][1] = a * t[2] - b * t[4] + c * t[5]; t[0] = g * p - o * h; t[1] = f * p - n * h; t[2] = f * o - n * g; t[3] = e * p - m * h; t[4] = e * o - m * g; t[5] = e * n - m * f; dest[0][2] = b * t[0] - c * t[1] + d * t[2]; dest[1][2] =-(a * t[0] - c * t[3] + d * t[4]); dest[2][2] = a * t[1] - b * t[3] + d * t[5]; dest[3][2] =-(a * t[2] - b * t[4] + c * t[5]); t[0] = g * l - k * h; t[1] = f * l - j * h; t[2] = f * k - j * g; t[3] = e * l - i * h; t[4] = e * k - i * g; t[5] = e * j - i * f; dest[0][3] =-(b * t[0] - c * t[1] + d * t[2]); dest[1][3] = a * t[0] - c * t[3] + d * t[4]; dest[2][3] =-(a * t[1] - b * t[3] + d * t[5]); dest[3][3] = a * t[2] - b * t[4] + c * t[5]; det = 1.0f / (a * dest[0][0] + b * dest[1][0] + c * dest[2][0] + d * dest[3][0]); glm_mat4_scale_p(dest, det); #endif } /*! * @brief inverse mat4 and store in dest * * this func uses reciprocal approximation without extra corrections * e.g Newton-Raphson. this should work faster than normal, * to get more precise use glm_mat4_inv version. * * NOTE: You will lose precision, glm_mat4_inv is more accurate * * @param[in] mat matrix * @param[out] dest inverse matrix */ CGLM_INLINE void glm_mat4_inv_fast(mat4 mat, mat4 dest) { #if defined( __SSE__ ) || defined( __SSE2__ ) glm_mat4_inv_fast_sse2(mat, dest); #else glm_mat4_inv(mat, dest); #endif } /*! * @brief swap two matrix columns * * @param[in,out] mat matrix * @param[in] col1 col1 * @param[in] col2 col2 */ CGLM_INLINE void glm_mat4_swap_col(mat4 mat, int col1, int col2) { CGLM_ALIGN(16) vec4 tmp; glm_vec4_copy(mat[col1], tmp); glm_vec4_copy(mat[col2], mat[col1]); glm_vec4_copy(tmp, mat[col2]); } /*! * @brief swap two matrix rows * * @param[in,out] mat matrix * @param[in] row1 row1 * @param[in] row2 row2 */ CGLM_INLINE void glm_mat4_swap_row(mat4 mat, int row1, int row2) { CGLM_ALIGN(16) vec4 tmp; tmp[0] = mat[0][row1]; tmp[1] = mat[1][row1]; tmp[2] = mat[2][row1]; tmp[3] = mat[3][row1]; mat[0][row1] = mat[0][row2]; mat[1][row1] = mat[1][row2]; mat[2][row1] = mat[2][row2]; mat[3][row1] = mat[3][row2]; mat[0][row2] = tmp[0]; mat[1][row2] = tmp[1]; mat[2][row2] = tmp[2]; mat[3][row2] = tmp[3]; } /*! * @brief helper for R (row vector) * M (matrix) * C (column vector) * * rmc stands for Row * Matrix * Column * * the result is scalar because R * M = Matrix1x4 (row vector), * then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar) * * @param[in] r row vector or matrix1x4 * @param[in] m matrix4x4 * @param[in] c column vector or matrix4x1 * * @return scalar value e.g. B(s) */ CGLM_INLINE float glm_mat4_rmc(vec4 r, mat4 m, vec4 c) { vec4 tmp; glm_mat4_mulv(m, c, tmp); return glm_vec4_dot(r, tmp); } #endif /* cglm_mat_h */