Update Large Steam Turbine

* Multiple input hatches now handled properly.
* Now use 125% maximum input consumption and penalty
* We now track averageFlow and totalFlow separately: we don't want turbine byproducts generated from the average, but the actual consumption.


Notes from last pull:
* We track 125% allowance via remainingFlow.  We do still attempt to pull 125% from each hatch, but only up to our 125% overall allowance. (So even with two hatches, we can still only pull 500 steam total from a 400 steam rotor)
* With remainingFlow, we gain optimization: we don't even check unnecessary hatches if the first one provided enough steam.
* Reinstated averageFlow.
* added a ton of comments for your convenience.
This commit is contained in:
pyure 2015-08-08 20:14:06 -04:00
parent c71e7473d6
commit a170c6529a

View file

@ -67,21 +67,32 @@ public class GT_MetaTileEntity_LargeTurbine_Steam extends GT_MetaTileEntity_Larg
@Override @Override
int fluidIntoPower(ArrayList<FluidStack> aFluids, int aOptFlow, int aBaseEff) { int fluidIntoPower(ArrayList<FluidStack> aFluids, int aOptFlow, int aBaseEff) {
int tEU=0; int tEU=0;
int tOut=0; int averageFlow = 0; // To prevent closed water loops from breaking. EU is based on average flow
for(int i=0;i<aFluids.size();i++){ int totalFlow = 0; // Byproducts are based on actual flow
int flow = 0;
int remainingFlow = (int)(aOptFlow * 1.25f); // Allowed to use up to 125% of optimal flow. Variable required outside of loop for multi-hatch scenarios.
for(int i=0;i<aFluids.size() && remainingFlow > 0;i++){ // loop through each hatch; extract inputs and track totals.
if(aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("fluid.steam")||aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("ic2.fluidSteam")){ if(aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("fluid.steam")||aFluids.get(i).getFluid().getUnlocalizedName(aFluids.get(i)).equals("ic2.fluidSteam")){
tOut = Math.min((int)(aOptFlow*1.5f),aFluids.get(i).amount); flow = aFluids.get(i).amount; // Get all (steam) in hatch
depleteInput(new FluidStack(aFluids.get(i), tOut)); flow = Math.min(flow, Math.min(remainingFlow, (int)( aOptFlow * 1.25f))); // try to use up to 125% of optimal flow w/o exceeding remainingFlow
depleteInput(new FluidStack(aFluids.get(i), flow)); // deplete that amount
remainingFlow -= flow; // track amount we're allowed to continue depleting from hatches
totalFlow += flow; // track total input used
} }
} }
tOut = getAverage(tOut); averageFlow = getAverage(totalFlow); // calculate recent average usage for power output purposes but NOT byproduct generation. We used what we used, and get byproducts from that.
tEU = Math.min(aOptFlow,tOut);
addOutput(GT_ModHandler.getDistilledWater(useWater(tOut/160.0f)));
if(tOut>0&&tOut<aOptFlow){
tEU = tEU*(tOut*100/aOptFlow)+3;
}
return tEU * aBaseEff / 20000;
}
tEU = Math.min(aOptFlow, averageFlow);
addOutput(GT_ModHandler.getDistilledWater(useWater(totalFlow/160.0f)));
if(averageFlow > 0 && averageFlow != aOptFlow){
float efficiency = 1.0f - Math.abs(((averageFlow - (float)aOptFlow) / aOptFlow));
tEU *= efficiency;
tEU = Math.max(1, tEU * aBaseEff / 20000);
}
else {
tEU = tEU * aBaseEff / 20000;
}
return tEU;
}
} }