This commit is contained in:
KP 2024-07-24 14:50:10 -05:00
parent be91ae1d6f
commit 41b1fac0e7
8 changed files with 1614 additions and 374 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 250 B

After

Width:  |  Height:  |  Size: 242 B

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,820 @@
#pragma once
#include <algorithm>
#include <cassert>
#include <cmath>
#include <memory>
#include <vector>
namespace mapbox {
namespace util {
template <std::size_t I, typename T> struct nth {
inline static typename std::tuple_element<I, T>::type
get(const T& t) { return std::get<I>(t); };
};
}
namespace detail {
template <typename N = uint32_t>
class Earcut {
public:
std::vector<N> indices;
std::size_t vertices = 0;
template <typename Polygon>
void operator()(const Polygon& points);
private:
struct Node {
Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
Node(const Node&) = delete;
Node& operator=(const Node&) = delete;
Node(Node&&) = delete;
Node& operator=(Node&&) = delete;
const N i;
const double x;
const double y;
// previous and next vertice nodes in a polygon ring
Node* prev = nullptr;
Node* next = nullptr;
// z-order curve value
int32_t z = 0;
// previous and next nodes in z-order
Node* prevZ = nullptr;
Node* nextZ = nullptr;
// indicates whether this is a steiner point
bool steiner = false;
};
template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
Node* filterPoints(Node* start, Node* end = nullptr);
void earcutLinked(Node* ear, int pass = 0);
bool isEar(Node* ear);
bool isEarHashed(Node* ear);
Node* cureLocalIntersections(Node* start);
void splitEarcut(Node* start);
template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
Node* eliminateHole(Node* hole, Node* outerNode);
Node* findHoleBridge(Node* hole, Node* outerNode);
bool sectorContainsSector(const Node* m, const Node* p);
void indexCurve(Node* start);
Node* sortLinked(Node* list);
int32_t zOrder(const double x_, const double y_);
Node* getLeftmost(Node* start);
bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
bool isValidDiagonal(Node* a, Node* b);
double area(const Node* p, const Node* q, const Node* r) const;
bool equals(const Node* p1, const Node* p2);
bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
bool onSegment(const Node* p, const Node* q, const Node* r);
int sign(double val);
bool intersectsPolygon(const Node* a, const Node* b);
bool locallyInside(const Node* a, const Node* b);
bool middleInside(const Node* a, const Node* b);
Node* splitPolygon(Node* a, Node* b);
template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
void removeNode(Node* p);
bool hashing;
double minX, maxX;
double minY, maxY;
double inv_size = 0;
template <typename T, typename Alloc = std::allocator<T>>
class ObjectPool {
public:
ObjectPool() { }
ObjectPool(std::size_t blockSize_) {
reset(blockSize_);
}
~ObjectPool() {
clear();
}
template <typename... Args>
T* construct(Args&&... args) {
if (currentIndex >= blockSize) {
currentBlock = alloc_traits::allocate(alloc, blockSize);
allocations.emplace_back(currentBlock);
currentIndex = 0;
}
T* object = &currentBlock[currentIndex++];
alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
return object;
}
void reset(std::size_t newBlockSize) {
for (auto allocation : allocations) {
alloc_traits::deallocate(alloc, allocation, blockSize);
}
allocations.clear();
blockSize = std::max<std::size_t>(1, newBlockSize);
currentBlock = nullptr;
currentIndex = blockSize;
}
void clear() { reset(blockSize); }
private:
T* currentBlock = nullptr;
std::size_t currentIndex = 1;
std::size_t blockSize = 1;
std::vector<T*> allocations;
Alloc alloc;
typedef typename std::allocator_traits<Alloc> alloc_traits;
};
ObjectPool<Node> nodes;
};
template <typename N> template <typename Polygon>
void Earcut<N>::operator()(const Polygon& points) {
// reset
indices.clear();
vertices = 0;
if (points.empty()) return;
double x;
double y;
int threshold = 80;
std::size_t len = 0;
for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
threshold -= static_cast<int>(points[i].size());
len += points[i].size();
}
//estimate size of nodes and indices
nodes.reset(len * 3 / 2);
indices.reserve(len + points[0].size());
Node* outerNode = linkedList(points[0], true);
if (!outerNode || outerNode->prev == outerNode->next) return;
if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
hashing = threshold < 0;
if (hashing) {
Node* p = outerNode->next;
minX = maxX = outerNode->x;
minY = maxY = outerNode->y;
do {
x = p->x;
y = p->y;
minX = std::min<double>(minX, x);
minY = std::min<double>(minY, y);
maxX = std::max<double>(maxX, x);
maxY = std::max<double>(maxY, y);
p = p->next;
} while (p != outerNode);
// minX, minY and size are later used to transform coords into integers for z-order calculation
inv_size = std::max<double>(maxX - minX, maxY - minY);
inv_size = inv_size != .0 ? (1. / inv_size) : .0;
}
earcutLinked(outerNode);
nodes.clear();
}
// create a circular doubly linked list from polygon points in the specified winding order
template <typename N> template <typename Ring>
typename Earcut<N>::Node*
Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
using Point = typename Ring::value_type;
double sum = 0;
const std::size_t len = points.size();
std::size_t i, j;
Node* last = nullptr;
// calculate original winding order of a polygon ring
for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
const auto& p1 = points[i];
const auto& p2 = points[j];
const double p20 = util::nth<0, Point>::get(p2);
const double p10 = util::nth<0, Point>::get(p1);
const double p11 = util::nth<1, Point>::get(p1);
const double p21 = util::nth<1, Point>::get(p2);
sum += (p20 - p10) * (p11 + p21);
}
// link points into circular doubly-linked list in the specified winding order
if (clockwise == (sum > 0)) {
for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
} else {
for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
}
if (last && equals(last, last->next)) {
removeNode(last);
last = last->next;
}
vertices += len;
return last;
}
// eliminate colinear or duplicate points
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::filterPoints(Node* start, Node* end) {
if (!end) end = start;
Node* p = start;
bool again;
do {
again = false;
if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
removeNode(p);
p = end = p->prev;
if (p == p->next) break;
again = true;
} else {
p = p->next;
}
} while (again || p != end);
return end;
}
// main ear slicing loop which triangulates a polygon (given as a linked list)
template <typename N>
void Earcut<N>::earcutLinked(Node* ear, int pass) {
if (!ear) return;
// interlink polygon nodes in z-order
if (!pass && hashing) indexCurve(ear);
Node* stop = ear;
Node* prev;
Node* next;
int iterations = 0;
// iterate through ears, slicing them one by one
while (ear->prev != ear->next) {
iterations++;
prev = ear->prev;
next = ear->next;
if (hashing ? isEarHashed(ear) : isEar(ear)) {
// cut off the triangle
indices.emplace_back(prev->i);
indices.emplace_back(ear->i);
indices.emplace_back(next->i);
removeNode(ear);
// skipping the next vertice leads to less sliver triangles
ear = next->next;
stop = next->next;
continue;
}
ear = next;
// if we looped through the whole remaining polygon and can't find any more ears
if (ear == stop) {
// try filtering points and slicing again
if (!pass) earcutLinked(filterPoints(ear), 1);
// if this didn't work, try curing all small self-intersections locally
else if (pass == 1) {
ear = cureLocalIntersections(filterPoints(ear));
earcutLinked(ear, 2);
// as a last resort, try splitting the remaining polygon into two
} else if (pass == 2) splitEarcut(ear);
break;
}
}
}
// check whether a polygon node forms a valid ear with adjacent nodes
template <typename N>
bool Earcut<N>::isEar(Node* ear) {
const Node* a = ear->prev;
const Node* b = ear;
const Node* c = ear->next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// now make sure we don't have other points inside the potential ear
Node* p = ear->next->next;
while (p != ear->prev) {
if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0) return false;
p = p->next;
}
return true;
}
template <typename N>
bool Earcut<N>::isEarHashed(Node* ear) {
const Node* a = ear->prev;
const Node* b = ear;
const Node* c = ear->next;
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
// triangle bbox; min & max are calculated like this for speed
const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
// z-order range for the current triangle bbox;
const int32_t minZ = zOrder(minTX, minTY);
const int32_t maxZ = zOrder(maxTX, maxTY);
// first look for points inside the triangle in increasing z-order
Node* p = ear->nextZ;
while (p && p->z <= maxZ) {
if (p != ear->prev && p != ear->next &&
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0) return false;
p = p->nextZ;
}
// then look for points in decreasing z-order
p = ear->prevZ;
while (p && p->z >= minZ) {
if (p != ear->prev && p != ear->next &&
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
area(p->prev, p, p->next) >= 0) return false;
p = p->prevZ;
}
return true;
}
// go through all polygon nodes and cure small local self-intersections
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::cureLocalIntersections(Node* start) {
Node* p = start;
do {
Node* a = p->prev;
Node* b = p->next->next;
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
indices.emplace_back(a->i);
indices.emplace_back(p->i);
indices.emplace_back(b->i);
// remove two nodes involved
removeNode(p);
removeNode(p->next);
p = start = b;
}
p = p->next;
} while (p != start);
return filterPoints(p);
}
// try splitting polygon into two and triangulate them independently
template <typename N>
void Earcut<N>::splitEarcut(Node* start) {
// look for a valid diagonal that divides the polygon into two
Node* a = start;
do {
Node* b = a->next->next;
while (b != a->prev) {
if (a->i != b->i && isValidDiagonal(a, b)) {
// split the polygon in two by the diagonal
Node* c = splitPolygon(a, b);
// filter colinear points around the cuts
a = filterPoints(a, a->next);
c = filterPoints(c, c->next);
// run earcut on each half
earcutLinked(a);
earcutLinked(c);
return;
}
b = b->next;
}
a = a->next;
} while (a != start);
}
// link every hole into the outer loop, producing a single-ring polygon without holes
template <typename N> template <typename Polygon>
typename Earcut<N>::Node*
Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
const size_t len = points.size();
std::vector<Node*> queue;
for (size_t i = 1; i < len; i++) {
Node* list = linkedList(points[i], false);
if (list) {
if (list == list->next) list->steiner = true;
queue.push_back(getLeftmost(list));
}
}
std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
return a->x < b->x;
});
// process holes from left to right
for (size_t i = 0; i < queue.size(); i++) {
outerNode = eliminateHole(queue[i], outerNode);
outerNode = filterPoints(outerNode, outerNode->next);
}
return outerNode;
}
// find a bridge between vertices that connects hole with an outer ring and and link it
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
Node* bridge = findHoleBridge(hole, outerNode);
if (!bridge) {
return outerNode;
}
Node* bridgeReverse = splitPolygon(bridge, hole);
// filter collinear points around the cuts
Node* filteredBridge = filterPoints(bridge, bridge->next);
filterPoints(bridgeReverse, bridgeReverse->next);
// Check if input node was removed by the filtering
return outerNode == bridge ? filteredBridge : outerNode;
}
// David Eberly's algorithm for finding a bridge between hole and outer polygon
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
Node* p = outerNode;
double hx = hole->x;
double hy = hole->y;
double qx = -std::numeric_limits<double>::infinity();
Node* m = nullptr;
// find a segment intersected by a ray from the hole's leftmost Vertex to the left;
// segment's endpoint with lesser x will be potential connection Vertex
do {
if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
if (x <= hx && x > qx) {
qx = x;
if (x == hx) {
if (hy == p->y) return p;
if (hy == p->next->y) return p->next;
}
m = p->x < p->next->x ? p : p->next;
}
}
p = p->next;
} while (p != outerNode);
if (!m) return 0;
if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint
// look for points inside the triangle of hole Vertex, segment intersection and endpoint;
// if there are no points found, we have a valid connection;
// otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
const Node* stop = m;
double tanMin = std::numeric_limits<double>::infinity();
double tanCur = 0;
p = m;
double mx = m->x;
double my = m->y;
do {
if (hx >= p->x && p->x >= mx && hx != p->x &&
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
if (locallyInside(p, hole) &&
(tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
m = p;
tanMin = tanCur;
}
}
p = p->next;
} while (p != stop);
return m;
}
// whether sector in vertex m contains sector in vertex p in the same coordinates
template <typename N>
bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) {
return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
}
// interlink polygon nodes in z-order
template <typename N>
void Earcut<N>::indexCurve(Node* start) {
assert(start);
Node* p = start;
do {
p->z = p->z ? p->z : zOrder(p->x, p->y);
p->prevZ = p->prev;
p->nextZ = p->next;
p = p->next;
} while (p != start);
p->prevZ->nextZ = nullptr;
p->prevZ = nullptr;
sortLinked(p);
}
// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::sortLinked(Node* list) {
assert(list);
Node* p;
Node* q;
Node* e;
Node* tail;
int i, numMerges, pSize, qSize;
int inSize = 1;
for (;;) {
p = list;
list = nullptr;
tail = nullptr;
numMerges = 0;
while (p) {
numMerges++;
q = p;
pSize = 0;
for (i = 0; i < inSize; i++) {
pSize++;
q = q->nextZ;
if (!q) break;
}
qSize = inSize;
while (pSize > 0 || (qSize > 0 && q)) {
if (pSize == 0) {
e = q;
q = q->nextZ;
qSize--;
} else if (qSize == 0 || !q) {
e = p;
p = p->nextZ;
pSize--;
} else if (p->z <= q->z) {
e = p;
p = p->nextZ;
pSize--;
} else {
e = q;
q = q->nextZ;
qSize--;
}
if (tail) tail->nextZ = e;
else list = e;
e->prevZ = tail;
tail = e;
}
p = q;
}
tail->nextZ = nullptr;
if (numMerges <= 1) return list;
inSize *= 2;
}
}
// z-order of a Vertex given coords and size of the data bounding box
template <typename N>
int32_t Earcut<N>::zOrder(const double x_, const double y_) {
// coords are transformed into non-negative 15-bit integer range
int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
x = (x | (x << 8)) & 0x00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F;
x = (x | (x << 2)) & 0x33333333;
x = (x | (x << 1)) & 0x55555555;
y = (y | (y << 8)) & 0x00FF00FF;
y = (y | (y << 4)) & 0x0F0F0F0F;
y = (y | (y << 2)) & 0x33333333;
y = (y | (y << 1)) & 0x55555555;
return x | (y << 1);
}
// find the leftmost node of a polygon ring
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::getLeftmost(Node* start) {
Node* p = start;
Node* leftmost = start;
do {
if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
leftmost = p;
p = p->next;
} while (p != start);
return leftmost;
}
// check if a point lies within a convex triangle
template <typename N>
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
}
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
template <typename N>
bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // dones't intersect other edges
((locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
(area(a->prev, a, b->prev) != 0.0 || area(a, b->prev, b) != 0.0)) || // does not create opposite-facing sectors
(equals(a, b) && area(a->prev, a, a->next) > 0 && area(b->prev, b, b->next) > 0)); // special zero-length case
}
// signed area of a triangle
template <typename N>
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
}
// check if two points are equal
template <typename N>
bool Earcut<N>::equals(const Node* p1, const Node* p2) {
return p1->x == p2->x && p1->y == p2->y;
}
// check if two segments intersect
template <typename N>
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
int o1 = sign(area(p1, q1, p2));
int o2 = sign(area(p1, q1, q2));
int o3 = sign(area(p2, q2, p1));
int o4 = sign(area(p2, q2, q1));
if (o1 != o2 && o3 != o4) return true; // general case
if (o1 == 0 && onSegment(p1, p2, q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
if (o2 == 0 && onSegment(p1, q2, q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
if (o3 == 0 && onSegment(p2, p1, q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
if (o4 == 0 && onSegment(p2, q1, q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
return false;
}
// for collinear points p, q, r, check if point q lies on segment pr
template <typename N>
bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) {
return q->x <= std::max<double>(p->x, r->x) &&
q->x >= std::min<double>(p->x, r->x) &&
q->y <= std::max<double>(p->y, r->y) &&
q->y >= std::min<double>(p->y, r->y);
}
template <typename N>
int Earcut<N>::sign(double val) {
return (0.0 < val) - (val < 0.0);
}
// check if a polygon diagonal intersects any polygon segments
template <typename N>
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
const Node* p = a;
do {
if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
intersects(p, p->next, a, b)) return true;
p = p->next;
} while (p != a);
return false;
}
// check if a polygon diagonal is locally inside the polygon
template <typename N>
bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
return area(a->prev, a, a->next) < 0 ?
area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
}
// check if the middle Vertex of a polygon diagonal is inside the polygon
template <typename N>
bool Earcut<N>::middleInside(const Node* a, const Node* b) {
const Node* p = a;
bool inside = false;
double px = (a->x + b->x) / 2;
double py = (a->y + b->y) / 2;
do {
if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
(px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
inside = !inside;
p = p->next;
} while (p != a);
return inside;
}
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
// single ring
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::splitPolygon(Node* a, Node* b) {
Node* a2 = nodes.construct(a->i, a->x, a->y);
Node* b2 = nodes.construct(b->i, b->x, b->y);
Node* an = a->next;
Node* bp = b->prev;
a->next = b;
b->prev = a;
a2->next = an;
an->prev = a2;
b2->next = a2;
a2->prev = b2;
bp->next = b2;
b2->prev = bp;
return b2;
}
// create a node and util::optionally link it with previous one (in a circular doubly linked list)
template <typename N> template <typename Point>
typename Earcut<N>::Node*
Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
if (!last) {
p->prev = p;
p->next = p;
} else {
assert(last);
p->next = last->next;
p->prev = last;
last->next->prev = p;
last->next = p;
}
return p;
}
template <typename N>
void Earcut<N>::removeNode(Node* p) {
p->next->prev = p->prev;
p->prev->next = p->next;
if (p->prevZ) p->prevZ->nextZ = p->nextZ;
if (p->nextZ) p->nextZ->prevZ = p->prevZ;
}
}
template <typename N = uint32_t, typename Polygon>
std::vector<N> earcut(const Polygon& poly) {
mapbox::detail::Earcut<N> earcut;
earcut(poly);
return std::move(earcut.indices);
}
}

View file

@ -1,6 +1,7 @@
#include "KP3D_Geometry.h"
#include <clipper2/clipper.h>
#include <earcut.hpp>
#include "KP3D_Log.h"
@ -59,4 +60,47 @@ std::vector<std::vector<Vec2>> ClipPolygonHoles(std::vector<Vec2> polygon, std::
return {polygon};
}
std::vector<Vec2> TriangulatePolygon(std::vector<Vec2> in_polygon, std::vector<std::vector<Vec2>> holes)
{
std::vector<Vec2> renderable_polygon;
//std::vector<std::vector<Vec2>> all_polygons;
//all_polygons.push_back(in_polygon);
//all_polygons.insert(all_polygons.end(), holes.begin(), holes.end());
std::vector<std::vector<std::array<float, 2>>> mb_polygon;
std::vector<std::array<float, 2>> mb_polyline;
for (const Vec2& v: in_polygon)
mb_polyline.push_back({{v.x, v.y}});
mb_polygon.push_back(mb_polyline);
//for (auto& poly : holes)
for (int i = 0; i < holes.size(); i++)
{
auto& poly = holes[i];
std::vector<std::array<float, 2>> polyl;
for (const Vec2& v : poly)
polyl.push_back({{v.x, v.y}});
// std::reverse(polyl.begin(), polyl.end());
mb_polygon.push_back(polyl);
}
std::vector<uint32> vertex_indices = mapbox::earcut(mb_polygon);
assert(vertex_indices.size() % 3 == 0);
for (int idx = 0; idx < vertex_indices.size(); idx += 3)
{
std::array<float, 2> a = mb_polyline[vertex_indices[idx + 0]];
std::array<float, 2> b = mb_polyline[vertex_indices[idx + 1]];
std::array<float, 2> c = mb_polyline[vertex_indices[idx + 2]];
renderable_polygon.push_back({a[0], a[1]});
renderable_polygon.push_back({b[0], b[1]});
renderable_polygon.push_back({c[0], c[1]});
}
return renderable_polygon;
}
} // namespace kp3d

View file

@ -55,6 +55,7 @@ float Distance(XYf a, XYf b);
std::vector<std::vector<Vec2>> SplitComplexPolygon(std::vector<Vec2> polygon);
std::vector<std::vector<Vec2>> ClipPolygonHoles(std::vector<Vec2> polygon, std::vector<std::vector<Vec2>> holes);
std::vector<Vec2> TriangulatePolygon(std::vector<Vec2> polygon, std::vector<std::vector<Vec2>> holes);
} // namespace kp3d

View file

@ -124,11 +124,12 @@ void Map::BuildFlat(Sector& sector, Flat& flat, bool invert)
float min_height = MAX;
float max_height = -MAX;
//std::vector<Vec2> clipper_out = TriangulatePolygon(flat_polygons, subsector_polygons);
for (int i = 0; i < clipper_out.size(); i += 3)
{
c2t::Point a = clipper_out.at(i + 0);
c2t::Point b = clipper_out.at(i + 1);
c2t::Point c = clipper_out.at(i + 2);
auto a = clipper_out.at(i + 0);
auto b = clipper_out.at(i + 1);
auto c = clipper_out.at(i + 2);
float au = a.x * 0.5f, av = a.y * 0.5f;
float bu = b.x * 0.5f, bv = b.y * 0.5f;
@ -312,6 +313,14 @@ void Map::JoinSectors(Sector& sector)
if (on_segment && not_child)
good = true;
if (good && !l.portal && !ld.portal)
{
if (same_points)
{
ld.textures[TEX_FRONT] = nullptr;
ld.flags = Wall::FLAG_OPENING | Wall::FLAG_TOUCHED;
ld.portal = &s;
}
else
{
XYf old_end = ld.end;
ld.end.x = l.end.x;
@ -335,6 +344,7 @@ void Map::JoinSectors(Sector& sector)
InsertLine(sector.walls, i + 1, w1);
InsertLine(sector.walls, i + 2, w2);
}
KP3D_LOG_INFO("{} IS CONNECTED TO {}", sector.id, s.id);
@ -642,6 +652,7 @@ void Map::BuildSkybox(const std::string& texture_path, float scale)
void Map::RenderSkybox()
{
return;
glDisable(GL_DEPTH_TEST);
Renderer3D::PushShader(Renderer3D::GetDefaultShader());
m_skybox_data.transform.translation = Renderer3D::GetPrimaryCamera()->position;

View file

@ -122,6 +122,7 @@ public:
void RenderGrid();
public:
bool join_disabled = false;
std::vector<Sector> original_sectors;
std::vector<Sector> sectors;
bool render_wireframe = true;

View file

@ -43,6 +43,12 @@ void Editor::Init()
void Editor::Update()
{
if (sandbox->IsKeyDown(kp3d::KEY_O))
{
sandbox->map.join_disabled ^= 1;
sandbox->KeyReset(kp3d::KEY_O);
}
if (sandbox->IsMouseButtonDown(kp3d::MOUSE_BUTTON_LEFT))
{
points.push_back(m_stem_pos);