731 lines
45 KiB
C++
731 lines
45 KiB
C++
/// @ref gtc_matrix_transform
|
|
/// @file glm/gtc/matrix_transform.hpp
|
|
///
|
|
/// @see core (dependence)
|
|
/// @see gtx_transform
|
|
/// @see gtx_transform2
|
|
///
|
|
/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform
|
|
/// @ingroup gtc
|
|
///
|
|
/// Include <glm/gtc/matrix_transform.hpp> to use the features of this extension.
|
|
///
|
|
/// Defines functions that generate common transformation matrices.
|
|
///
|
|
/// The matrices generated by this extension use standard OpenGL fixed-function
|
|
/// conventions. For example, the lookAt function generates a transform from world
|
|
/// space into the specific eye space that the projective matrix functions
|
|
/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility
|
|
/// specifications defines the particular layout of this eye space.
|
|
|
|
#pragma once
|
|
|
|
// Dependencies
|
|
#include "../mat4x4.hpp"
|
|
#include "../vec2.hpp"
|
|
#include "../vec3.hpp"
|
|
#include "../vec4.hpp"
|
|
#include "../gtc/constants.hpp"
|
|
|
|
#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
|
|
# pragma message("GLM: GLM_GTC_matrix_transform extension included")
|
|
#endif
|
|
|
|
namespace glm
|
|
{
|
|
/// @addtogroup gtc_matrix_transform
|
|
/// @{
|
|
|
|
/// Builds an identity matrix.
|
|
template<typename genType>
|
|
GLM_FUNC_DECL GLM_CONSTEXPR genType identity();
|
|
|
|
/// Builds a translation 4 * 4 matrix created from a vector of 3 components.
|
|
///
|
|
/// @param m Input matrix multiplied by this translation matrix.
|
|
/// @param v Coordinates of a translation vector.
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @code
|
|
/// #include <glm/glm.hpp>
|
|
/// #include <glm/gtc/matrix_transform.hpp>
|
|
/// ...
|
|
/// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));
|
|
/// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f
|
|
/// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f
|
|
/// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f
|
|
/// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f
|
|
/// @endcode
|
|
/// @see gtc_matrix_transform
|
|
/// @see - translate(mat<4, 4, T, Q> const& m, T x, T y, T z)
|
|
/// @see - translate(vec<3, T, Q> const& v)
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glTranslate.xml">glTranslate man page</a>
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> translate(
|
|
mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v);
|
|
|
|
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.
|
|
///
|
|
/// @param m Input matrix multiplied by this rotation matrix.
|
|
/// @param angle Rotation angle expressed in radians.
|
|
/// @param axis Rotation axis, recommended to be normalized.
|
|
/// @tparam T Value type used to build the matrix. Supported: half, float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - rotate(mat<4, 4, T, Q> const& m, T angle, T x, T y, T z)
|
|
/// @see - rotate(T angle, vec<3, T, Q> const& v)
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glRotate.xml">glRotate man page</a>
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> rotate(
|
|
mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& axis);
|
|
|
|
/// Builds a scale 4 * 4 matrix created from 3 scalars.
|
|
///
|
|
/// @param m Input matrix multiplied by this scale matrix.
|
|
/// @param v Ratio of scaling for each axis.
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - scale(mat<4, 4, T, Q> const& m, T x, T y, T z)
|
|
/// @see - scale(vec<3, T, Q> const& v)
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glScale.xml">glScale man page</a>
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> scale(
|
|
mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v);
|
|
|
|
/// Creates a matrix for projecting two-dimensional coordinates onto the screen.
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar)
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a>
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
|
|
T left, T right, T bottom, T top);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition.
|
|
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top)
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a>
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho(
|
|
T left, T right, T bottom, T top, T zNear, T zFar);
|
|
|
|
/// Creates a left handed frustum matrix.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a left handed frustum matrix.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a right handed frustum matrix.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a right handed frustum matrix.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a left handed frustum matrix.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a right handed frustum matrix.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
/// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition.
|
|
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
|
|
///
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a>
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum(
|
|
T left, T right, T bottom, T top, T near, T far);
|
|
|
|
|
|
/// Creates a matrix for a right handed, symetric perspective-view frustum.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a right handed, symetric perspective-view frustum.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a left handed, symetric perspective-view frustum.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a left handed, symetric perspective-view frustum.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a right handed, symetric perspective-view frustum.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a left handed, symetric perspective-view frustum.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition.
|
|
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
|
|
///
|
|
/// @param fovy Specifies the field of view angle in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a>
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective(
|
|
T fovy, T aspect, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view using right-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a right handed perspective projection matrix based on a field of view.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a left handed perspective projection matrix based on a field of view.
|
|
/// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
/// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition.
|
|
/// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
|
|
///
|
|
/// @param fov Expressed in radians.
|
|
/// @param width Width of the viewport
|
|
/// @param height Height of the viewport
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov(
|
|
T fov, T width, T height, T near, T far);
|
|
|
|
/// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite.
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH(
|
|
T fovy, T aspect, T near);
|
|
|
|
/// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite.
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH(
|
|
T fovy, T aspect, T near);
|
|
|
|
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness.
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective(
|
|
T fovy, T aspect, T near);
|
|
|
|
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
|
|
T fovy, T aspect, T near);
|
|
|
|
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
|
|
///
|
|
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
|
|
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
|
|
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
|
|
/// @param ep Epsilon
|
|
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommended), float or double.
|
|
/// @see gtc_matrix_transform
|
|
template<typename T>
|
|
GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective(
|
|
T fovy, T aspect, T near, T ep);
|
|
|
|
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param obj Specify the object coordinates.
|
|
/// @param model Specifies the current modelview matrix
|
|
/// @param proj Specifies the current projection matrix
|
|
/// @param viewport Specifies the current viewport
|
|
/// @return Return the computed window coordinates.
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_DECL vec<3, T, Q> projectZO(
|
|
vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
|
|
|
|
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param obj Specify the object coordinates.
|
|
/// @param model Specifies the current modelview matrix
|
|
/// @param proj Specifies the current projection matrix
|
|
/// @param viewport Specifies the current viewport
|
|
/// @return Return the computed window coordinates.
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_DECL vec<3, T, Q> projectNO(
|
|
vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
|
|
|
|
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates using default near and far clip planes definition.
|
|
/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
|
|
///
|
|
/// @param obj Specify the object coordinates.
|
|
/// @param model Specifies the current modelview matrix
|
|
/// @param proj Specifies the current projection matrix
|
|
/// @param viewport Specifies the current viewport
|
|
/// @return Return the computed window coordinates.
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluProject.xml">gluProject man page</a>
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_DECL vec<3, T, Q> project(
|
|
vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
|
|
|
|
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition)
|
|
///
|
|
/// @param win Specify the window coordinates to be mapped.
|
|
/// @param model Specifies the modelview matrix
|
|
/// @param proj Specifies the projection matrix
|
|
/// @param viewport Specifies the viewport
|
|
/// @return Returns the computed object coordinates.
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_DECL vec<3, T, Q> unProjectZO(
|
|
vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
|
|
|
|
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
|
|
/// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition)
|
|
///
|
|
/// @param win Specify the window coordinates to be mapped.
|
|
/// @param model Specifies the modelview matrix
|
|
/// @param proj Specifies the projection matrix
|
|
/// @param viewport Specifies the viewport
|
|
/// @return Returns the computed object coordinates.
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_DECL vec<3, T, Q> unProjectNO(
|
|
vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
|
|
|
|
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates using default near and far clip planes definition.
|
|
/// To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE.
|
|
///
|
|
/// @param win Specify the window coordinates to be mapped.
|
|
/// @param model Specifies the modelview matrix
|
|
/// @param proj Specifies the projection matrix
|
|
/// @param viewport Specifies the viewport
|
|
/// @return Returns the computed object coordinates.
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluUnProject.xml">gluUnProject man page</a>
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_DECL vec<3, T, Q> unProject(
|
|
vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport);
|
|
|
|
/// Define a picking region
|
|
///
|
|
/// @param center Specify the center of a picking region in window coordinates.
|
|
/// @param delta Specify the width and height, respectively, of the picking region in window coordinates.
|
|
/// @param viewport Rendering viewport
|
|
/// @tparam T Native type used for the computation. Currently supported: half (not recommended), float or double.
|
|
/// @tparam U Currently supported: Floating-point types and integer types.
|
|
/// @see gtc_matrix_transform
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPickMatrix.xml">gluPickMatrix man page</a>
|
|
template<typename T, qualifier Q, typename U>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> pickMatrix(
|
|
vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport);
|
|
|
|
/// Build a right handed look at view matrix.
|
|
///
|
|
/// @param eye Position of the camera
|
|
/// @param center Position where the camera is looking at
|
|
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
|
|
/// @see gtc_matrix_transform
|
|
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> lookAtRH(
|
|
vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up);
|
|
|
|
/// Build a left handed look at view matrix.
|
|
///
|
|
/// @param eye Position of the camera
|
|
/// @param center Position where the camera is looking at
|
|
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
|
|
/// @see gtc_matrix_transform
|
|
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> lookAtLH(
|
|
vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up);
|
|
|
|
/// Build a look at view matrix based on the default handedness.
|
|
///
|
|
/// @param eye Position of the camera
|
|
/// @param center Position where the camera is looking at
|
|
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
|
|
/// @see gtc_matrix_transform
|
|
/// @see - frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal) frustum(T const& left, T const& right, T const& bottom, T const& top, T const& nearVal, T const& farVal)
|
|
/// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml">gluLookAt man page</a>
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_DECL mat<4, 4, T, Q> lookAt(
|
|
vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up);
|
|
|
|
/// @}
|
|
}//namespace glm
|
|
|
|
#include "matrix_transform.inl"
|