792 lines
28 KiB
C++
792 lines
28 KiB
C++
/// @ref gtc_matrix_transform
|
|
|
|
#include "../geometric.hpp"
|
|
#include "../trigonometric.hpp"
|
|
#include "../matrix.hpp"
|
|
|
|
namespace glm
|
|
{
|
|
template<typename genType>
|
|
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType identity()
|
|
{
|
|
return detail::init_gentype<genType, detail::genTypeTrait<genType>::GENTYPE>::identity();
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> translate(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v)
|
|
{
|
|
mat<4, 4, T, Q> Result(m);
|
|
Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
|
|
return Result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v)
|
|
{
|
|
T const a = angle;
|
|
T const c = cos(a);
|
|
T const s = sin(a);
|
|
|
|
vec<3, T, Q> axis(normalize(v));
|
|
vec<3, T, Q> temp((T(1) - c) * axis);
|
|
|
|
mat<4, 4, T, Q> Rotate;
|
|
Rotate[0][0] = c + temp[0] * axis[0];
|
|
Rotate[0][1] = temp[0] * axis[1] + s * axis[2];
|
|
Rotate[0][2] = temp[0] * axis[2] - s * axis[1];
|
|
|
|
Rotate[1][0] = temp[1] * axis[0] - s * axis[2];
|
|
Rotate[1][1] = c + temp[1] * axis[1];
|
|
Rotate[1][2] = temp[1] * axis[2] + s * axis[0];
|
|
|
|
Rotate[2][0] = temp[2] * axis[0] + s * axis[1];
|
|
Rotate[2][1] = temp[2] * axis[1] - s * axis[0];
|
|
Rotate[2][2] = c + temp[2] * axis[2];
|
|
|
|
mat<4, 4, T, Q> Result;
|
|
Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
|
|
Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
|
|
Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
|
|
Result[3] = m[3];
|
|
return Result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> rotate_slow(mat<4, 4, T, Q> const& m, T angle, vec<3, T, Q> const& v)
|
|
{
|
|
T const a = angle;
|
|
T const c = cos(a);
|
|
T const s = sin(a);
|
|
mat<4, 4, T, Q> Result;
|
|
|
|
vec<3, T, Q> axis = normalize(v);
|
|
|
|
Result[0][0] = c + (static_cast<T>(1) - c) * axis.x * axis.x;
|
|
Result[0][1] = (static_cast<T>(1) - c) * axis.x * axis.y + s * axis.z;
|
|
Result[0][2] = (static_cast<T>(1) - c) * axis.x * axis.z - s * axis.y;
|
|
Result[0][3] = static_cast<T>(0);
|
|
|
|
Result[1][0] = (static_cast<T>(1) - c) * axis.y * axis.x - s * axis.z;
|
|
Result[1][1] = c + (static_cast<T>(1) - c) * axis.y * axis.y;
|
|
Result[1][2] = (static_cast<T>(1) - c) * axis.y * axis.z + s * axis.x;
|
|
Result[1][3] = static_cast<T>(0);
|
|
|
|
Result[2][0] = (static_cast<T>(1) - c) * axis.z * axis.x + s * axis.y;
|
|
Result[2][1] = (static_cast<T>(1) - c) * axis.z * axis.y - s * axis.x;
|
|
Result[2][2] = c + (static_cast<T>(1) - c) * axis.z * axis.z;
|
|
Result[2][3] = static_cast<T>(0);
|
|
|
|
Result[3] = vec<4, T, Q>(0, 0, 0, 1);
|
|
return m * Result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v)
|
|
{
|
|
mat<4, 4, T, Q> Result;
|
|
Result[0] = m[0] * v[0];
|
|
Result[1] = m[1] * v[1];
|
|
Result[2] = m[2] * v[2];
|
|
Result[3] = m[3];
|
|
return Result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> scale_slow(mat<4, 4, T, Q> const& m, vec<3, T, Q> const& v)
|
|
{
|
|
mat<4, 4, T, Q> Result(T(1));
|
|
Result[0][0] = v.x;
|
|
Result[1][1] = v.y;
|
|
Result[2][2] = v.z;
|
|
return m * Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(1));
|
|
Result[0][0] = static_cast<T>(2) / (right - left);
|
|
Result[1][1] = static_cast<T>(2) / (top - bottom);
|
|
Result[2][2] = - static_cast<T>(1);
|
|
Result[3][0] = - (right + left) / (right - left);
|
|
Result[3][1] = - (top + bottom) / (top - bottom);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(1);
|
|
Result[0][0] = static_cast<T>(2) / (right - left);
|
|
Result[1][1] = static_cast<T>(2) / (top - bottom);
|
|
Result[2][2] = static_cast<T>(1) / (zFar - zNear);
|
|
Result[3][0] = - (right + left) / (right - left);
|
|
Result[3][1] = - (top + bottom) / (top - bottom);
|
|
Result[3][2] = - zNear / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(1);
|
|
Result[0][0] = static_cast<T>(2) / (right - left);
|
|
Result[1][1] = static_cast<T>(2) / (top - bottom);
|
|
Result[2][2] = static_cast<T>(2) / (zFar - zNear);
|
|
Result[3][0] = - (right + left) / (right - left);
|
|
Result[3][1] = - (top + bottom) / (top - bottom);
|
|
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_ZO(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(1);
|
|
Result[0][0] = static_cast<T>(2) / (right - left);
|
|
Result[1][1] = static_cast<T>(2) / (top - bottom);
|
|
Result[2][2] = - static_cast<T>(1) / (zFar - zNear);
|
|
Result[3][0] = - (right + left) / (right - left);
|
|
Result[3][1] = - (top + bottom) / (top - bottom);
|
|
Result[3][2] = - zNear / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH_NO(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(1);
|
|
Result[0][0] = static_cast<T>(2) / (right - left);
|
|
Result[1][1] = static_cast<T>(2) / (top - bottom);
|
|
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
|
|
Result[3][0] = - (right + left) / (right - left);
|
|
Result[3][1] = - (top + bottom) / (top - bottom);
|
|
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoZO(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
|
|
else
|
|
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoNO(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
|
|
else
|
|
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoLH(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
|
|
else
|
|
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
|
|
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> orthoRH(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
|
|
else
|
|
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> ortho(T left, T right, T bottom, T top, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
|
|
return orthoLH_ZO(left, right, bottom, top, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
|
|
return orthoLH_NO(left, right, bottom, top, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
|
|
return orthoRH_ZO(left, right, bottom, top, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
|
|
return orthoRH_NO(left, right, bottom, top, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(0);
|
|
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
|
|
Result[2][0] = (right + left) / (right - left);
|
|
Result[2][1] = (top + bottom) / (top - bottom);
|
|
Result[2][2] = farVal / (farVal - nearVal);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(0);
|
|
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
|
|
Result[2][0] = (right + left) / (right - left);
|
|
Result[2][1] = (top + bottom) / (top - bottom);
|
|
Result[2][2] = (farVal + nearVal) / (farVal - nearVal);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_ZO(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(0);
|
|
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
|
|
Result[2][0] = (right + left) / (right - left);
|
|
Result[2][1] = (top + bottom) / (top - bottom);
|
|
Result[2][2] = farVal / (nearVal - farVal);
|
|
Result[2][3] = static_cast<T>(-1);
|
|
Result[3][2] = -(farVal * nearVal) / (farVal - nearVal);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH_NO(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
mat<4, 4, T, defaultp> Result(0);
|
|
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
|
|
Result[2][0] = (right + left) / (right - left);
|
|
Result[2][1] = (top + bottom) / (top - bottom);
|
|
Result[2][2] = - (farVal + nearVal) / (farVal - nearVal);
|
|
Result[2][3] = static_cast<T>(-1);
|
|
Result[3][2] = - (static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumZO(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
|
|
else
|
|
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumNO(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
|
|
else
|
|
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumLH(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
|
|
else
|
|
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustumRH(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
|
|
else
|
|
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> frustum(T left, T right, T bottom, T top, T nearVal, T farVal)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
|
|
return frustumLH_ZO(left, right, bottom, top, nearVal, farVal);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
|
|
return frustumLH_NO(left, right, bottom, top, nearVal, farVal);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
|
|
return frustumRH_ZO(left, right, bottom, top, nearVal, farVal);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
|
|
return frustumRH_NO(left, right, bottom, top, nearVal, farVal);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_ZO(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
|
|
|
|
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
|
|
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
|
|
Result[2][2] = zFar / (zNear - zFar);
|
|
Result[2][3] = - static_cast<T>(1);
|
|
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
|
|
|
|
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
|
|
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
|
|
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
|
|
Result[2][3] = - static_cast<T>(1);
|
|
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_ZO(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
|
|
|
|
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
|
|
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
|
|
Result[2][2] = zFar / (zFar - zNear);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH_NO(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
|
|
|
|
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
|
|
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
|
|
Result[2][2] = (zFar + zNear) / (zFar - zNear);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveZO(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
|
|
else
|
|
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveNO(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
|
|
else
|
|
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveLH(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
|
|
else
|
|
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
|
|
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
|
|
else
|
|
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspective(T fovy, T aspect, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
|
|
return perspectiveLH_ZO(fovy, aspect, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
|
|
return perspectiveLH_NO(fovy, aspect, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
|
|
return perspectiveRH_ZO(fovy, aspect, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
|
|
return perspectiveRH_NO(fovy, aspect, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_ZO(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
assert(width > static_cast<T>(0));
|
|
assert(height > static_cast<T>(0));
|
|
assert(fov > static_cast<T>(0));
|
|
|
|
T const rad = fov;
|
|
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
|
|
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = w;
|
|
Result[1][1] = h;
|
|
Result[2][2] = zFar / (zNear - zFar);
|
|
Result[2][3] = - static_cast<T>(1);
|
|
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH_NO(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
assert(width > static_cast<T>(0));
|
|
assert(height > static_cast<T>(0));
|
|
assert(fov > static_cast<T>(0));
|
|
|
|
T const rad = fov;
|
|
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
|
|
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = w;
|
|
Result[1][1] = h;
|
|
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
|
|
Result[2][3] = - static_cast<T>(1);
|
|
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_ZO(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
assert(width > static_cast<T>(0));
|
|
assert(height > static_cast<T>(0));
|
|
assert(fov > static_cast<T>(0));
|
|
|
|
T const rad = fov;
|
|
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
|
|
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = w;
|
|
Result[1][1] = h;
|
|
Result[2][2] = zFar / (zFar - zNear);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = -(zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH_NO(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
assert(width > static_cast<T>(0));
|
|
assert(height > static_cast<T>(0));
|
|
assert(fov > static_cast<T>(0));
|
|
|
|
T const rad = fov;
|
|
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
|
|
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = w;
|
|
Result[1][1] = h;
|
|
Result[2][2] = (zFar + zNear) / (zFar - zNear);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovZO(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
|
|
else
|
|
return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovNO(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
|
|
else
|
|
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovLH(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
|
|
else
|
|
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFovRH(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
|
|
else
|
|
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveFov(T fov, T width, T height, T zNear, T zFar)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_ZO)
|
|
return perspectiveFovLH_ZO(fov, width, height, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_LH_NO)
|
|
return perspectiveFovLH_NO(fov, width, height, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_ZO)
|
|
return perspectiveFovRH_ZO(fov, width, height, zNear, zFar);
|
|
else if(GLM_CONFIG_CLIP_CONTROL == GLM_CLIP_CONTROL_RH_NO)
|
|
return perspectiveFovRH_NO(fov, width, height, zNear, zFar);
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveRH(T fovy, T aspect, T zNear)
|
|
{
|
|
T const range = tan(fovy / static_cast<T>(2)) * zNear;
|
|
T const left = -range * aspect;
|
|
T const right = range * aspect;
|
|
T const bottom = -range;
|
|
T const top = range;
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
|
|
Result[2][2] = - static_cast<T>(1);
|
|
Result[2][3] = - static_cast<T>(1);
|
|
Result[3][2] = - static_cast<T>(2) * zNear;
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspectiveLH(T fovy, T aspect, T zNear)
|
|
{
|
|
T const range = tan(fovy / static_cast<T>(2)) * zNear;
|
|
T const left = -range * aspect;
|
|
T const right = range * aspect;
|
|
T const bottom = -range;
|
|
T const top = range;
|
|
|
|
mat<4, 4, T, defaultp> Result(T(0));
|
|
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
|
|
Result[2][2] = static_cast<T>(1);
|
|
Result[2][3] = static_cast<T>(1);
|
|
Result[3][2] = - static_cast<T>(2) * zNear;
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> infinitePerspective(T fovy, T aspect, T zNear)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return infinitePerspectiveLH(fovy, aspect, zNear);
|
|
else
|
|
return infinitePerspectiveRH(fovy, aspect, zNear);
|
|
}
|
|
|
|
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear, T ep)
|
|
{
|
|
T const range = tan(fovy / static_cast<T>(2)) * zNear;
|
|
T const left = -range * aspect;
|
|
T const right = range * aspect;
|
|
T const bottom = -range;
|
|
T const top = range;
|
|
|
|
mat<4, 4, T, defaultp> Result(static_cast<T>(0));
|
|
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
|
|
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
|
|
Result[2][2] = ep - static_cast<T>(1);
|
|
Result[2][3] = static_cast<T>(-1);
|
|
Result[3][2] = (ep - static_cast<T>(2)) * zNear;
|
|
return Result;
|
|
}
|
|
|
|
template<typename T>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> tweakedInfinitePerspective(T fovy, T aspect, T zNear)
|
|
{
|
|
return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
|
|
}
|
|
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> projectZO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
|
|
{
|
|
vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
|
|
tmp = model * tmp;
|
|
tmp = proj * tmp;
|
|
|
|
tmp /= tmp.w;
|
|
tmp.x = tmp.x * static_cast<T>(0.5) + static_cast<T>(0.5);
|
|
tmp.y = tmp.y * static_cast<T>(0.5) + static_cast<T>(0.5);
|
|
|
|
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
|
|
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
|
|
|
|
return vec<3, T, Q>(tmp);
|
|
}
|
|
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> projectNO(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
|
|
{
|
|
vec<4, T, Q> tmp = vec<4, T, Q>(obj, static_cast<T>(1));
|
|
tmp = model * tmp;
|
|
tmp = proj * tmp;
|
|
|
|
tmp /= tmp.w;
|
|
tmp = tmp * static_cast<T>(0.5) + static_cast<T>(0.5);
|
|
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
|
|
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
|
|
|
|
return vec<3, T, Q>(tmp);
|
|
}
|
|
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> project(vec<3, T, Q> const& obj, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return projectZO(obj, model, proj, viewport);
|
|
else
|
|
return projectNO(obj, model, proj, viewport);
|
|
}
|
|
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectZO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
|
|
{
|
|
mat<4, 4, T, Q> Inverse = inverse(proj * model);
|
|
|
|
vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
|
|
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
|
|
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
|
|
tmp.x = tmp.x * static_cast<T>(2) - static_cast<T>(1);
|
|
tmp.y = tmp.y * static_cast<T>(2) - static_cast<T>(1);
|
|
|
|
vec<4, T, Q> obj = Inverse * tmp;
|
|
obj /= obj.w;
|
|
|
|
return vec<3, T, Q>(obj);
|
|
}
|
|
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> unProjectNO(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
|
|
{
|
|
mat<4, 4, T, Q> Inverse = inverse(proj * model);
|
|
|
|
vec<4, T, Q> tmp = vec<4, T, Q>(win, T(1));
|
|
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
|
|
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
|
|
tmp = tmp * static_cast<T>(2) - static_cast<T>(1);
|
|
|
|
vec<4, T, Q> obj = Inverse * tmp;
|
|
obj /= obj.w;
|
|
|
|
return vec<3, T, Q>(obj);
|
|
}
|
|
|
|
template<typename T, typename U, qualifier Q>
|
|
GLM_FUNC_QUALIFIER vec<3, T, Q> unProject(vec<3, T, Q> const& win, mat<4, 4, T, Q> const& model, mat<4, 4, T, Q> const& proj, vec<4, U, Q> const& viewport)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_ZO_BIT)
|
|
return unProjectZO(win, model, proj, viewport);
|
|
else
|
|
return unProjectNO(win, model, proj, viewport);
|
|
}
|
|
|
|
template<typename T, qualifier Q, typename U>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> pickMatrix(vec<2, T, Q> const& center, vec<2, T, Q> const& delta, vec<4, U, Q> const& viewport)
|
|
{
|
|
assert(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0));
|
|
mat<4, 4, T, Q> Result(static_cast<T>(1));
|
|
|
|
if(!(delta.x > static_cast<T>(0) && delta.y > static_cast<T>(0)))
|
|
return Result; // Error
|
|
|
|
vec<3, T, Q> Temp(
|
|
(static_cast<T>(viewport[2]) - static_cast<T>(2) * (center.x - static_cast<T>(viewport[0]))) / delta.x,
|
|
(static_cast<T>(viewport[3]) - static_cast<T>(2) * (center.y - static_cast<T>(viewport[1]))) / delta.y,
|
|
static_cast<T>(0));
|
|
|
|
// Translate and scale the picked region to the entire window
|
|
Result = translate(Result, Temp);
|
|
return scale(Result, vec<3, T, Q>(static_cast<T>(viewport[2]) / delta.x, static_cast<T>(viewport[3]) / delta.y, static_cast<T>(1)));
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtRH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
|
|
{
|
|
vec<3, T, Q> const f(normalize(center - eye));
|
|
vec<3, T, Q> const s(normalize(cross(f, up)));
|
|
vec<3, T, Q> const u(cross(s, f));
|
|
|
|
mat<4, 4, T, Q> Result(1);
|
|
Result[0][0] = s.x;
|
|
Result[1][0] = s.y;
|
|
Result[2][0] = s.z;
|
|
Result[0][1] = u.x;
|
|
Result[1][1] = u.y;
|
|
Result[2][1] = u.z;
|
|
Result[0][2] =-f.x;
|
|
Result[1][2] =-f.y;
|
|
Result[2][2] =-f.z;
|
|
Result[3][0] =-dot(s, eye);
|
|
Result[3][1] =-dot(u, eye);
|
|
Result[3][2] = dot(f, eye);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAtLH(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
|
|
{
|
|
vec<3, T, Q> const f(normalize(center - eye));
|
|
vec<3, T, Q> const s(normalize(cross(up, f)));
|
|
vec<3, T, Q> const u(cross(f, s));
|
|
|
|
mat<4, 4, T, Q> Result(1);
|
|
Result[0][0] = s.x;
|
|
Result[1][0] = s.y;
|
|
Result[2][0] = s.z;
|
|
Result[0][1] = u.x;
|
|
Result[1][1] = u.y;
|
|
Result[2][1] = u.z;
|
|
Result[0][2] = f.x;
|
|
Result[1][2] = f.y;
|
|
Result[2][2] = f.z;
|
|
Result[3][0] = -dot(s, eye);
|
|
Result[3][1] = -dot(u, eye);
|
|
Result[3][2] = -dot(f, eye);
|
|
return Result;
|
|
}
|
|
|
|
template<typename T, qualifier Q>
|
|
GLM_FUNC_QUALIFIER mat<4, 4, T, Q> lookAt(vec<3, T, Q> const& eye, vec<3, T, Q> const& center, vec<3, T, Q> const& up)
|
|
{
|
|
if(GLM_CONFIG_CLIP_CONTROL & GLM_CLIP_CONTROL_LH_BIT)
|
|
return lookAtLH(eye, center, up);
|
|
else
|
|
return lookAtRH(eye, center, up);
|
|
}
|
|
}//namespace glm
|