269 lines
6 KiB
C
269 lines
6 KiB
C
|
/*
|
||
|
* Copyright (c), Recep Aslantas.
|
||
|
*
|
||
|
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||
|
* Full license can be found in the LICENSE file
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Functions:
|
||
|
CGLM_INLINE void glm_translate2d(mat3 m, vec2 v)
|
||
|
CGLM_INLINE void glm_translate2d_to(mat3 m, vec2 v, mat3 dest)
|
||
|
CGLM_INLINE void glm_translate2d_x(mat3 m, float x)
|
||
|
CGLM_INLINE void glm_translate2d_y(mat3 m, float y)
|
||
|
CGLM_INLINE void glm_translate2d_make(mat3 m, vec2 v)
|
||
|
CGLM_INLINE void glm_scale2d_to(mat3 m, vec2 v, mat3 dest)
|
||
|
CGLM_INLINE void glm_scale2d_make(mat3 m, vec2 v)
|
||
|
CGLM_INLINE void glm_scale2d(mat3 m, vec2 v)
|
||
|
CGLM_INLINE void glm_scale2d_uni(mat3 m, float s)
|
||
|
CGLM_INLINE void glm_rotate2d_make(mat3 m, float angle)
|
||
|
CGLM_INLINE void glm_rotate2d(mat3 m, float angle)
|
||
|
CGLM_INLINE void glm_rotate2d_to(mat3 m, float angle, mat3 dest)
|
||
|
*/
|
||
|
|
||
|
#ifndef cglm_affine2d_h
|
||
|
#define cglm_affine2d_h
|
||
|
|
||
|
#include "common.h"
|
||
|
#include "util.h"
|
||
|
#include "vec2.h"
|
||
|
#include "mat3.h"
|
||
|
|
||
|
/*!
|
||
|
* @brief translate existing 2d transform matrix by v vector
|
||
|
* and stores result in same matrix
|
||
|
*
|
||
|
* @param[in, out] m affine transfrom
|
||
|
* @param[in] v translate vector [x, y]
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_translate2d(mat3 m, vec2 v) {
|
||
|
m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
|
||
|
m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
|
||
|
m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief translate existing 2d transform matrix by v vector
|
||
|
* and store result in dest
|
||
|
*
|
||
|
* source matrix will remain same
|
||
|
*
|
||
|
* @param[in] m affine transfrom
|
||
|
* @param[in] v translate vector [x, y]
|
||
|
* @param[out] dest translated matrix
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_translate2d_to(mat3 m, vec2 v, mat3 dest) {
|
||
|
glm_mat3_copy(m, dest);
|
||
|
glm_translate2d(dest, v);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief translate existing 2d transform matrix by x factor
|
||
|
*
|
||
|
* @param[in, out] m affine transfrom
|
||
|
* @param[in] x x factor
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_translate2d_x(mat3 m, float x) {
|
||
|
m[2][0] = m[0][0] * x + m[2][0];
|
||
|
m[2][1] = m[0][1] * x + m[2][1];
|
||
|
m[2][2] = m[0][2] * x + m[2][2];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief translate existing 2d transform matrix by y factor
|
||
|
*
|
||
|
* @param[in, out] m affine transfrom
|
||
|
* @param[in] y y factor
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_translate2d_y(mat3 m, float y) {
|
||
|
m[2][0] = m[1][0] * y + m[2][0];
|
||
|
m[2][1] = m[1][1] * y + m[2][1];
|
||
|
m[2][2] = m[1][2] * y + m[2][2];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief creates NEW translate 2d transform matrix by v vector
|
||
|
*
|
||
|
* @param[out] m affine transfrom
|
||
|
* @param[in] v translate vector [x, y]
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_translate2d_make(mat3 m, vec2 v) {
|
||
|
glm_mat3_identity(m);
|
||
|
m[2][0] = v[0];
|
||
|
m[2][1] = v[1];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief scale existing 2d transform matrix by v vector
|
||
|
* and store result in dest
|
||
|
*
|
||
|
* @param[in] m affine transfrom
|
||
|
* @param[in] v scale vector [x, y]
|
||
|
* @param[out] dest scaled matrix
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_scale2d_to(mat3 m, vec2 v, mat3 dest) {
|
||
|
dest[0][0] = m[0][0] * v[0];
|
||
|
dest[0][1] = m[0][1] * v[0];
|
||
|
dest[0][2] = m[0][2] * v[0];
|
||
|
|
||
|
dest[1][0] = m[1][0] * v[1];
|
||
|
dest[1][1] = m[1][1] * v[1];
|
||
|
dest[1][2] = m[1][2] * v[1];
|
||
|
|
||
|
dest[2][0] = m[2][0];
|
||
|
dest[2][1] = m[2][1];
|
||
|
dest[2][2] = m[2][2];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief creates NEW 2d scale matrix by v vector
|
||
|
*
|
||
|
* @param[out] m affine transfrom
|
||
|
* @param[in] v scale vector [x, y]
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_scale2d_make(mat3 m, vec2 v) {
|
||
|
glm_mat3_identity(m);
|
||
|
m[0][0] = v[0];
|
||
|
m[1][1] = v[1];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief scales existing 2d transform matrix by v vector
|
||
|
* and stores result in same matrix
|
||
|
*
|
||
|
* @param[in, out] m affine transfrom
|
||
|
* @param[in] v scale vector [x, y]
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_scale2d(mat3 m, vec2 v) {
|
||
|
m[0][0] = m[0][0] * v[0];
|
||
|
m[0][1] = m[0][1] * v[0];
|
||
|
m[0][2] = m[0][2] * v[0];
|
||
|
|
||
|
m[1][0] = m[1][0] * v[1];
|
||
|
m[1][1] = m[1][1] * v[1];
|
||
|
m[1][2] = m[1][2] * v[1];
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief applies uniform scale to existing 2d transform matrix v = [s, s]
|
||
|
* and stores result in same matrix
|
||
|
*
|
||
|
* @param[in, out] m affine transfrom
|
||
|
* @param[in] s scale factor
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_scale2d_uni(mat3 m, float s) {
|
||
|
m[0][0] = m[0][0] * s;
|
||
|
m[0][1] = m[0][1] * s;
|
||
|
m[0][2] = m[0][2] * s;
|
||
|
|
||
|
m[1][0] = m[1][0] * s;
|
||
|
m[1][1] = m[1][1] * s;
|
||
|
m[1][2] = m[1][2] * s;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief creates NEW rotation matrix by angle around Z axis
|
||
|
*
|
||
|
* @param[out] m affine transfrom
|
||
|
* @param[in] angle angle (radians)
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_rotate2d_make(mat3 m, float angle) {
|
||
|
float c, s;
|
||
|
|
||
|
s = sinf(angle);
|
||
|
c = cosf(angle);
|
||
|
|
||
|
m[0][0] = c;
|
||
|
m[0][1] = s;
|
||
|
m[0][2] = 0;
|
||
|
|
||
|
m[1][0] = -s;
|
||
|
m[1][1] = c;
|
||
|
m[1][2] = 0;
|
||
|
|
||
|
m[2][0] = 0.0f;
|
||
|
m[2][1] = 0.0f;
|
||
|
m[2][2] = 1.0f;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief rotate existing 2d transform matrix around Z axis by angle
|
||
|
* and store result in same matrix
|
||
|
*
|
||
|
* @param[in, out] m affine transfrom
|
||
|
* @param[in] angle angle (radians)
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_rotate2d(mat3 m, float angle) {
|
||
|
float m00 = m[0][0], m10 = m[1][0],
|
||
|
m01 = m[0][1], m11 = m[1][1],
|
||
|
m02 = m[0][2], m12 = m[1][2];
|
||
|
float c, s;
|
||
|
|
||
|
s = sinf(angle);
|
||
|
c = cosf(angle);
|
||
|
|
||
|
m[0][0] = m00 * c + m10 * s;
|
||
|
m[0][1] = m01 * c + m11 * s;
|
||
|
m[0][2] = m02 * c + m12 * s;
|
||
|
|
||
|
m[1][0] = m00 * -s + m10 * c;
|
||
|
m[1][1] = m01 * -s + m11 * c;
|
||
|
m[1][2] = m02 * -s + m12 * c;
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* @brief rotate existing 2d transform matrix around Z axis by angle
|
||
|
* and store result in dest
|
||
|
*
|
||
|
* @param[in] m affine transfrom
|
||
|
* @param[in] angle angle (radians)
|
||
|
* @param[out] dest destination
|
||
|
*/
|
||
|
CGLM_INLINE
|
||
|
void
|
||
|
glm_rotate2d_to(mat3 m, float angle, mat3 dest) {
|
||
|
float m00 = m[0][0], m10 = m[1][0],
|
||
|
m01 = m[0][1], m11 = m[1][1],
|
||
|
m02 = m[0][2], m12 = m[1][2];
|
||
|
float c, s;
|
||
|
|
||
|
s = sinf(angle);
|
||
|
c = cosf(angle);
|
||
|
|
||
|
dest[0][0] = m00 * c + m10 * s;
|
||
|
dest[0][1] = m01 * c + m11 * s;
|
||
|
dest[0][2] = m02 * c + m12 * s;
|
||
|
|
||
|
dest[1][0] = m00 * -s + m10 * c;
|
||
|
dest[1][1] = m01 * -s + m11 * c;
|
||
|
dest[1][2] = m02 * -s + m12 * c;
|
||
|
|
||
|
dest[2][0] = m[2][0];
|
||
|
dest[2][1] = m[2][1];
|
||
|
dest[2][2] = m[2][2];
|
||
|
}
|
||
|
|
||
|
#endif /* cglm_affine2d_h */
|