1079 lines
24 KiB
C
1079 lines
24 KiB
C
/*
|
|
* Copyright (c), Recep Aslantas.
|
|
*
|
|
* MIT License (MIT), http://opensource.org/licenses/MIT
|
|
* Full license can be found in the LICENSE file
|
|
*/
|
|
|
|
/*
|
|
Macros:
|
|
GLM_VEC3_ONE_INIT
|
|
GLM_VEC3_ZERO_INIT
|
|
GLM_VEC3_ONE
|
|
GLM_VEC3_ZERO
|
|
GLM_YUP
|
|
GLM_ZUP
|
|
GLM_XUP
|
|
|
|
Functions:
|
|
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_zero(vec3 v);
|
|
CGLM_INLINE void glm_vec3_one(vec3 v);
|
|
CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b);
|
|
CGLM_INLINE float glm_vec3_norm2(vec3 v);
|
|
CGLM_INLINE float glm_vec3_norm(vec3 v);
|
|
CGLM_INLINE float glm_vec3_norm_one(vec3 v);
|
|
CGLM_INLINE float glm_vec3_norm_inf(vec3 v);
|
|
CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_adds(vec3 a, float s, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_subs(vec3 a, float s, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_divs(vec3 a, float s, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_flipsign(vec3 v);
|
|
CGLM_INLINE void glm_vec3_flipsign_to(vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_negate(vec3 v);
|
|
CGLM_INLINE void glm_vec3_inv(vec3 v);
|
|
CGLM_INLINE void glm_vec3_inv_to(vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_normalize(vec3 v);
|
|
CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 d);
|
|
CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b);
|
|
CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis);
|
|
CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b);
|
|
CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b);
|
|
CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal);
|
|
CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_step_uni(float edge, vec3 x, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_step(vec3 edge, vec3 x, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest);
|
|
CGLM_INLINE void glm_vec3_swizzle(vec3 v, int mask, vec3 dest);
|
|
|
|
Convenient:
|
|
CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
|
|
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
|
|
CGLM_INLINE void glm_normalize(vec3 v);
|
|
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
|
|
|
|
DEPRECATED:
|
|
glm_vec3_dup
|
|
glm_vec3_flipsign
|
|
glm_vec3_flipsign_to
|
|
glm_vec3_inv
|
|
glm_vec3_inv_to
|
|
glm_vec3_mulv
|
|
*/
|
|
|
|
#ifndef cglm_vec3_h
|
|
#define cglm_vec3_h
|
|
|
|
#include "common.h"
|
|
#include "vec4.h"
|
|
#include "vec3-ext.h"
|
|
#include "util.h"
|
|
|
|
/* DEPRECATED! use _copy, _ucopy versions */
|
|
#define glm_vec3_dup(v, dest) glm_vec3_copy(v, dest)
|
|
#define glm_vec3_flipsign(v) glm_vec3_negate(v)
|
|
#define glm_vec3_flipsign_to(v, dest) glm_vec3_negate_to(v, dest)
|
|
#define glm_vec3_inv(v) glm_vec3_negate(v)
|
|
#define glm_vec3_inv_to(v, dest) glm_vec3_negate_to(v, dest)
|
|
#define glm_vec3_mulv(a, b, d) glm_vec3_mul(a, b, d)
|
|
|
|
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
|
|
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
|
|
|
|
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
|
|
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
|
|
|
|
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
|
|
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
|
|
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
|
|
#define GLM_FORWARD ((vec3){0.0f, 0.0f, -1.0f})
|
|
|
|
#define GLM_XXX GLM_SHUFFLE3(0, 0, 0)
|
|
#define GLM_YYY GLM_SHUFFLE3(1, 1, 1)
|
|
#define GLM_ZZZ GLM_SHUFFLE3(2, 2, 2)
|
|
#define GLM_ZYX GLM_SHUFFLE3(0, 1, 2)
|
|
|
|
/*!
|
|
* @brief init vec3 using vec4
|
|
*
|
|
* @param[in] v4 vector4
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3(vec4 v4, vec3 dest) {
|
|
dest[0] = v4[0];
|
|
dest[1] = v4[1];
|
|
dest[2] = v4[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief copy all members of [a] to [dest]
|
|
*
|
|
* @param[in] a source
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_copy(vec3 a, vec3 dest) {
|
|
dest[0] = a[0];
|
|
dest[1] = a[1];
|
|
dest[2] = a[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief make vector zero
|
|
*
|
|
* @param[in, out] v vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_zero(vec3 v) {
|
|
v[0] = v[1] = v[2] = 0.0f;
|
|
}
|
|
|
|
/*!
|
|
* @brief make vector one
|
|
*
|
|
* @param[in, out] v vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_one(vec3 v) {
|
|
v[0] = v[1] = v[2] = 1.0f;
|
|
}
|
|
|
|
/*!
|
|
* @brief vec3 dot product
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
*
|
|
* @return dot product
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_dot(vec3 a, vec3 b) {
|
|
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief norm * norm (magnitude) of vec
|
|
*
|
|
* we can use this func instead of calling norm * norm, because it would call
|
|
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
|
* not good name for this func
|
|
*
|
|
* @param[in] v vector
|
|
*
|
|
* @return norm * norm
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_norm2(vec3 v) {
|
|
return glm_vec3_dot(v, v);
|
|
}
|
|
|
|
/*!
|
|
* @brief euclidean norm (magnitude), also called L2 norm
|
|
* this will give magnitude of vector in euclidean space
|
|
*
|
|
* @param[in] v vector
|
|
*
|
|
* @return norm
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_norm(vec3 v) {
|
|
return sqrtf(glm_vec3_norm2(v));
|
|
}
|
|
|
|
/*!
|
|
* @brief L1 norm of vec3
|
|
* Also known as Manhattan Distance or Taxicab norm.
|
|
* L1 Norm is the sum of the magnitudes of the vectors in a space.
|
|
* It is calculated as the sum of the absolute values of the vector components.
|
|
* In this norm, all the components of the vector are weighted equally.
|
|
*
|
|
* This computes:
|
|
* R = |v[0]| + |v[1]| + |v[2]|
|
|
*
|
|
* @param[in] v vector
|
|
*
|
|
* @return L1 norm
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_norm_one(vec3 v) {
|
|
vec3 t;
|
|
glm_vec3_abs(v, t);
|
|
return glm_vec3_hadd(t);
|
|
}
|
|
|
|
/*!
|
|
* @brief infinity norm of vec3
|
|
* Also known as Maximum norm.
|
|
* Infinity Norm is the largest magnitude among each element of a vector.
|
|
* It is calculated as the maximum of the absolute values of the vector components.
|
|
*
|
|
* This computes:
|
|
* inf norm = max(|v[0]|, |v[1]|, |v[2]|)
|
|
*
|
|
* @param[in] v vector
|
|
*
|
|
* @return infinity norm
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_norm_inf(vec3 v) {
|
|
vec3 t;
|
|
glm_vec3_abs(v, t);
|
|
return glm_vec3_max(t);
|
|
}
|
|
|
|
/*!
|
|
* @brief add a vector to b vector store result in dest
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @param[out] dest destination vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_add(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] = a[0] + b[0];
|
|
dest[1] = a[1] + b[1];
|
|
dest[2] = a[2] + b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief add scalar to v vector store result in dest (d = v + s)
|
|
*
|
|
* @param[in] v vector
|
|
* @param[in] s scalar
|
|
* @param[out] dest destination vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_adds(vec3 v, float s, vec3 dest) {
|
|
dest[0] = v[0] + s;
|
|
dest[1] = v[1] + s;
|
|
dest[2] = v[2] + s;
|
|
}
|
|
|
|
/*!
|
|
* @brief subtract b vector from a vector store result in dest
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @param[out] dest destination vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_sub(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] = a[0] - b[0];
|
|
dest[1] = a[1] - b[1];
|
|
dest[2] = a[2] - b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief subtract scalar from v vector store result in dest (d = v - s)
|
|
*
|
|
* @param[in] v vector
|
|
* @param[in] s scalar
|
|
* @param[out] dest destination vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_subs(vec3 v, float s, vec3 dest) {
|
|
dest[0] = v[0] - s;
|
|
dest[1] = v[1] - s;
|
|
dest[2] = v[2] - s;
|
|
}
|
|
|
|
/*!
|
|
* @brief multiply two vector (component-wise multiplication)
|
|
*
|
|
* @param a vector1
|
|
* @param b vector2
|
|
* @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_mul(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] = a[0] * b[0];
|
|
dest[1] = a[1] * b[1];
|
|
dest[2] = a[2] * b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief multiply/scale vec3 vector with scalar: result = v * s
|
|
*
|
|
* @param[in] v vector
|
|
* @param[in] s scalar
|
|
* @param[out] dest destination vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_scale(vec3 v, float s, vec3 dest) {
|
|
dest[0] = v[0] * s;
|
|
dest[1] = v[1] * s;
|
|
dest[2] = v[2] * s;
|
|
}
|
|
|
|
/*!
|
|
* @brief make vec3 vector scale as specified: result = unit(v) * s
|
|
*
|
|
* @param[in] v vector
|
|
* @param[in] s scalar
|
|
* @param[out] dest destination vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
|
|
float norm;
|
|
norm = glm_vec3_norm(v);
|
|
|
|
if (norm == 0.0f) {
|
|
glm_vec3_zero(dest);
|
|
return;
|
|
}
|
|
|
|
glm_vec3_scale(v, s / norm, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief div vector with another component-wise division: d = a / b
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_div(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] = a[0] / b[0];
|
|
dest[1] = a[1] / b[1];
|
|
dest[2] = a[2] / b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief div vector with scalar: d = v / s
|
|
*
|
|
* @param[in] v vector
|
|
* @param[in] s scalar
|
|
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_divs(vec3 v, float s, vec3 dest) {
|
|
dest[0] = v[0] / s;
|
|
dest[1] = v[1] / s;
|
|
dest[2] = v[2] / s;
|
|
}
|
|
|
|
/*!
|
|
* @brief add two vectors and add result to sum
|
|
*
|
|
* it applies += operator so dest must be initialized
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest dest += (a + b)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] += a[0] + b[0];
|
|
dest[1] += a[1] + b[1];
|
|
dest[2] += a[2] + b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief sub two vectors and add result to dest
|
|
*
|
|
* it applies += operator so dest must be initialized
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest dest += (a + b)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] += a[0] - b[0];
|
|
dest[1] += a[1] - b[1];
|
|
dest[2] += a[2] - b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief mul two vectors and add result to dest
|
|
*
|
|
* it applies += operator so dest must be initialized
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest dest += (a * b)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] += a[0] * b[0];
|
|
dest[1] += a[1] * b[1];
|
|
dest[2] += a[2] * b[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief mul vector with scalar and add result to sum
|
|
*
|
|
* it applies += operator so dest must be initialized
|
|
*
|
|
* @param[in] a vector
|
|
* @param[in] s scalar
|
|
* @param[out] dest dest += (a * b)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_muladds(vec3 a, float s, vec3 dest) {
|
|
dest[0] += a[0] * s;
|
|
dest[1] += a[1] * s;
|
|
dest[2] += a[2] * s;
|
|
}
|
|
|
|
/*!
|
|
* @brief add max of two vector to result/dest
|
|
*
|
|
* it applies += operator so dest must be initialized
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest dest += max(a, b)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] += glm_max(a[0], b[0]);
|
|
dest[1] += glm_max(a[1], b[1]);
|
|
dest[2] += glm_max(a[2], b[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief add min of two vector to result/dest
|
|
*
|
|
* it applies += operator so dest must be initialized
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest dest += min(a, b)
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] += glm_min(a[0], b[0]);
|
|
dest[1] += glm_min(a[1], b[1]);
|
|
dest[2] += glm_min(a[2], b[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief negate vector components and store result in dest
|
|
*
|
|
* @param[in] v vector
|
|
* @param[out] dest result vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_negate_to(vec3 v, vec3 dest) {
|
|
dest[0] = -v[0];
|
|
dest[1] = -v[1];
|
|
dest[2] = -v[2];
|
|
}
|
|
|
|
/*!
|
|
* @brief negate vector components
|
|
*
|
|
* @param[in, out] v vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_negate(vec3 v) {
|
|
glm_vec3_negate_to(v, v);
|
|
}
|
|
|
|
/*!
|
|
* @brief normalize vec3 and store result in same vec
|
|
*
|
|
* @param[in, out] v vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_normalize(vec3 v) {
|
|
float norm;
|
|
|
|
norm = glm_vec3_norm(v);
|
|
|
|
if (norm == 0.0f) {
|
|
v[0] = v[1] = v[2] = 0.0f;
|
|
return;
|
|
}
|
|
|
|
glm_vec3_scale(v, 1.0f / norm, v);
|
|
}
|
|
|
|
/*!
|
|
* @brief normalize vec3 to dest
|
|
*
|
|
* @param[in] v source
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_normalize_to(vec3 v, vec3 dest) {
|
|
float norm;
|
|
|
|
norm = glm_vec3_norm(v);
|
|
|
|
if (norm == 0.0f) {
|
|
glm_vec3_zero(dest);
|
|
return;
|
|
}
|
|
|
|
glm_vec3_scale(v, 1.0f / norm, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief cross product of two vector (RH)
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
|
|
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
|
|
dest[0] = a[1] * b[2] - a[2] * b[1];
|
|
dest[1] = a[2] * b[0] - a[0] * b[2];
|
|
dest[2] = a[0] * b[1] - a[1] * b[0];
|
|
}
|
|
|
|
/*!
|
|
* @brief cross product of two vector (RH) and normalize the result
|
|
*
|
|
* @param[in] a vector 1
|
|
* @param[in] b vector 2
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
|
|
glm_vec3_cross(a, b, dest);
|
|
glm_vec3_normalize(dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief angle betwen two vector
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
*
|
|
* @return angle as radians
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_angle(vec3 a, vec3 b) {
|
|
float norm, dot;
|
|
|
|
/* maybe compiler generate approximation instruction (rcp) */
|
|
norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b));
|
|
dot = glm_vec3_dot(a, b) * norm;
|
|
|
|
if (dot > 1.0f)
|
|
return 0.0f;
|
|
else if (dot < -1.0f)
|
|
return CGLM_PI;
|
|
|
|
return acosf(dot);
|
|
}
|
|
|
|
/*!
|
|
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
|
|
*
|
|
* @param[in, out] v vector
|
|
* @param[in] axis axis vector (must be unit vector)
|
|
* @param[in] angle angle by radians
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_rotate(vec3 v, float angle, vec3 axis) {
|
|
vec3 v1, v2, k;
|
|
float c, s;
|
|
|
|
c = cosf(angle);
|
|
s = sinf(angle);
|
|
|
|
glm_vec3_normalize_to(axis, k);
|
|
|
|
/* Right Hand, Rodrigues' rotation formula:
|
|
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
|
|
*/
|
|
glm_vec3_scale(v, c, v1);
|
|
|
|
glm_vec3_cross(k, v, v2);
|
|
glm_vec3_scale(v2, s, v2);
|
|
|
|
glm_vec3_add(v1, v2, v1);
|
|
|
|
glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2);
|
|
glm_vec3_add(v1, v2, v);
|
|
}
|
|
|
|
/*!
|
|
* @brief apply rotation matrix to vector
|
|
*
|
|
* matrix format should be (no perspective):
|
|
* a b c x
|
|
* e f g y
|
|
* i j k z
|
|
* 0 0 0 w
|
|
*
|
|
* @param[in] m affine matrix or rot matrix
|
|
* @param[in] v vector
|
|
* @param[out] dest rotated vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
|
|
vec4 x, y, z, res;
|
|
|
|
glm_vec4_normalize_to(m[0], x);
|
|
glm_vec4_normalize_to(m[1], y);
|
|
glm_vec4_normalize_to(m[2], z);
|
|
|
|
glm_vec4_scale(x, v[0], res);
|
|
glm_vec4_muladds(y, v[1], res);
|
|
glm_vec4_muladds(z, v[2], res);
|
|
|
|
glm_vec3(res, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief apply rotation matrix to vector
|
|
*
|
|
* @param[in] m affine matrix or rot matrix
|
|
* @param[in] v vector
|
|
* @param[out] dest rotated vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
|
|
vec4 res, x, y, z;
|
|
|
|
glm_vec4(m[0], 0.0f, x);
|
|
glm_vec4(m[1], 0.0f, y);
|
|
glm_vec4(m[2], 0.0f, z);
|
|
|
|
glm_vec4_normalize(x);
|
|
glm_vec4_normalize(y);
|
|
glm_vec4_normalize(z);
|
|
|
|
glm_vec4_scale(x, v[0], res);
|
|
glm_vec4_muladds(y, v[1], res);
|
|
glm_vec4_muladds(z, v[2], res);
|
|
|
|
glm_vec3(res, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief project a vector onto b vector
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @param[out] dest projected vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_proj(vec3 a, vec3 b, vec3 dest) {
|
|
glm_vec3_scale(b,
|
|
glm_vec3_dot(a, b) / glm_vec3_norm2(b),
|
|
dest);
|
|
}
|
|
|
|
/**
|
|
* @brief find center point of two vector
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @param[out] dest center point
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_center(vec3 a, vec3 b, vec3 dest) {
|
|
glm_vec3_add(a, b, dest);
|
|
glm_vec3_scale(dest, 0.5f, dest);
|
|
}
|
|
|
|
/**
|
|
* @brief squared distance between two vectors
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @return returns squared distance (distance * distance)
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_distance2(vec3 a, vec3 b) {
|
|
return glm_pow2(a[0] - b[0])
|
|
+ glm_pow2(a[1] - b[1])
|
|
+ glm_pow2(a[2] - b[2]);
|
|
}
|
|
|
|
/**
|
|
* @brief distance between two vectors
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @return returns distance
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_vec3_distance(vec3 a, vec3 b) {
|
|
return sqrtf(glm_vec3_distance2(a, b));
|
|
}
|
|
|
|
/*!
|
|
* @brief max values of vectors
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] = glm_max(a[0], b[0]);
|
|
dest[1] = glm_max(a[1], b[1]);
|
|
dest[2] = glm_max(a[2], b[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief min values of vectors
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
|
|
dest[0] = glm_min(a[0], b[0]);
|
|
dest[1] = glm_min(a[1], b[1]);
|
|
dest[2] = glm_min(a[2], b[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief possible orthogonal/perpendicular vector
|
|
*
|
|
* @param[in] v vector
|
|
* @param[out] dest orthogonal/perpendicular vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_ortho(vec3 v, vec3 dest) {
|
|
dest[0] = v[1] - v[2];
|
|
dest[1] = v[2] - v[0];
|
|
dest[2] = v[0] - v[1];
|
|
}
|
|
|
|
/*!
|
|
* @brief clamp vector's individual members between min and max values
|
|
*
|
|
* @param[in, out] v vector
|
|
* @param[in] minVal minimum value
|
|
* @param[in] maxVal maximum value
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_clamp(vec3 v, float minVal, float maxVal) {
|
|
v[0] = glm_clamp(v[0], minVal, maxVal);
|
|
v[1] = glm_clamp(v[1], minVal, maxVal);
|
|
v[2] = glm_clamp(v[2], minVal, maxVal);
|
|
}
|
|
|
|
/*!
|
|
* @brief linear interpolation between two vectors
|
|
*
|
|
* formula: from + s * (to - from)
|
|
*
|
|
* @param[in] from from value
|
|
* @param[in] to to value
|
|
* @param[in] t interpolant (amount)
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
|
|
vec3 s, v;
|
|
|
|
/* from + s * (to - from) */
|
|
glm_vec3_broadcast(t, s);
|
|
glm_vec3_sub(to, from, v);
|
|
glm_vec3_mul(s, v, v);
|
|
glm_vec3_add(from, v, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief linear interpolation between two vectors (clamped)
|
|
*
|
|
* formula: from + s * (to - from)
|
|
*
|
|
* @param[in] from from value
|
|
* @param[in] to to value
|
|
* @param[in] t interpolant (amount) clamped between 0 and 1
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest) {
|
|
glm_vec3_lerp(from, to, glm_clamp_zo(t), dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief linear interpolation between two vectors
|
|
*
|
|
* formula: from + s * (to - from)
|
|
*
|
|
* @param[in] from from value
|
|
* @param[in] to to value
|
|
* @param[in] t interpolant (amount)
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest) {
|
|
glm_vec3_lerp(from, to, t, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief linear interpolation between two vectors (clamped)
|
|
*
|
|
* formula: from + s * (to - from)
|
|
*
|
|
* @param[in] from from value
|
|
* @param[in] to to value
|
|
* @param[in] t interpolant (amount) clamped between 0 and 1
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest) {
|
|
glm_vec3_lerpc(from, to, t, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief threshold function (unidimensional)
|
|
*
|
|
* @param[in] edge threshold
|
|
* @param[in] x value to test against threshold
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_step_uni(float edge, vec3 x, vec3 dest) {
|
|
dest[0] = glm_step(edge, x[0]);
|
|
dest[1] = glm_step(edge, x[1]);
|
|
dest[2] = glm_step(edge, x[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief threshold function
|
|
*
|
|
* @param[in] edge threshold
|
|
* @param[in] x value to test against threshold
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_step(vec3 edge, vec3 x, vec3 dest) {
|
|
dest[0] = glm_step(edge[0], x[0]);
|
|
dest[1] = glm_step(edge[1], x[1]);
|
|
dest[2] = glm_step(edge[2], x[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief threshold function with a smooth transition (unidimensional)
|
|
*
|
|
* @param[in] edge0 low threshold
|
|
* @param[in] edge1 high threshold
|
|
* @param[in] x value to test against threshold
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest) {
|
|
dest[0] = glm_smoothstep(edge0, edge1, x[0]);
|
|
dest[1] = glm_smoothstep(edge0, edge1, x[1]);
|
|
dest[2] = glm_smoothstep(edge0, edge1, x[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief threshold function with a smooth transition
|
|
*
|
|
* @param[in] edge0 low threshold
|
|
* @param[in] edge1 high threshold
|
|
* @param[in] x value to test against threshold
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest) {
|
|
dest[0] = glm_smoothstep(edge0[0], edge1[0], x[0]);
|
|
dest[1] = glm_smoothstep(edge0[1], edge1[1], x[1]);
|
|
dest[2] = glm_smoothstep(edge0[2], edge1[2], x[2]);
|
|
}
|
|
|
|
/*!
|
|
* @brief smooth Hermite interpolation between two vectors
|
|
*
|
|
* formula: from + s * (to - from)
|
|
*
|
|
* @param[in] from from value
|
|
* @param[in] to to value
|
|
* @param[in] t interpolant (amount)
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest) {
|
|
vec3 s, v;
|
|
|
|
/* from + s * (to - from) */
|
|
glm_vec3_broadcast(glm_smooth(t), s);
|
|
glm_vec3_sub(to, from, v);
|
|
glm_vec3_mul(s, v, v);
|
|
glm_vec3_add(from, v, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief smooth Hermite interpolation between two vectors (clamped)
|
|
*
|
|
* formula: from + s * (to - from)
|
|
*
|
|
* @param[in] from from value
|
|
* @param[in] to to value
|
|
* @param[in] t interpolant (amount) clamped between 0 and 1
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest) {
|
|
glm_vec3_smoothinterp(from, to, glm_clamp_zo(t), dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief swizzle vector components
|
|
*
|
|
* you can use existin masks e.g. GLM_XXX, GLM_ZYX
|
|
*
|
|
* @param[in] v source
|
|
* @param[in] mask mask
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_vec3_swizzle(vec3 v, int mask, vec3 dest) {
|
|
vec3 t;
|
|
|
|
t[0] = v[(mask & (3 << 0))];
|
|
t[1] = v[(mask & (3 << 2)) >> 2];
|
|
t[2] = v[(mask & (3 << 4)) >> 4];
|
|
|
|
glm_vec3_copy(t, dest);
|
|
}
|
|
|
|
/*!
|
|
* @brief vec3 cross product
|
|
*
|
|
* this is just convenient wrapper
|
|
*
|
|
* @param[in] a source 1
|
|
* @param[in] b source 2
|
|
* @param[out] d destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_cross(vec3 a, vec3 b, vec3 d) {
|
|
glm_vec3_cross(a, b, d);
|
|
}
|
|
|
|
/*!
|
|
* @brief vec3 dot product
|
|
*
|
|
* this is just convenient wrapper
|
|
*
|
|
* @param[in] a vector1
|
|
* @param[in] b vector2
|
|
*
|
|
* @return dot product
|
|
*/
|
|
CGLM_INLINE
|
|
float
|
|
glm_dot(vec3 a, vec3 b) {
|
|
return glm_vec3_dot(a, b);
|
|
}
|
|
|
|
/*!
|
|
* @brief normalize vec3 and store result in same vec
|
|
*
|
|
* this is just convenient wrapper
|
|
*
|
|
* @param[in, out] v vector
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_normalize(vec3 v) {
|
|
glm_vec3_normalize(v);
|
|
}
|
|
|
|
/*!
|
|
* @brief normalize vec3 to dest
|
|
*
|
|
* this is just convenient wrapper
|
|
*
|
|
* @param[in] v source
|
|
* @param[out] dest destination
|
|
*/
|
|
CGLM_INLINE
|
|
void
|
|
glm_normalize_to(vec3 v, vec3 dest) {
|
|
glm_vec3_normalize_to(v, dest);
|
|
}
|
|
|
|
#endif /* cglm_vec3_h */
|