NouVeL/ADVect/ext/bgfx/bimg/3rdparty/iqa/source/ssim.c
2022-08-18 12:17:43 -04:00

322 lines
No EOL
11 KiB
C

/*
* Copyright (c) 2011, Tom Distler (http://tdistler.com)
* All rights reserved.
*
* The BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* - Neither the name of the tdistler.com nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "iqa.h"
#include "convolve.h"
#include "decimate.h"
#include "math_utils.h"
#include "ssim.h"
#include <stdlib.h>
#include <math.h>
/* Forward declarations. */
IQA_INLINE static double _calc_luminance(float, float, float, float);
IQA_INLINE static double _calc_contrast(double, float, float, float, float);
IQA_INLINE static double _calc_structure(float, double, float, float, float, float);
static int _ssim_map(const struct _ssim_int *, void *);
static float _ssim_reduce(int, int, void *);
/*
* SSIM(x,y)=(2*ux*uy + C1)*(2sxy + C2) / (ux^2 + uy^2 + C1)*(sx^2 + sy^2 + C2)
* where,
* ux = SUM(w*x)
* sx = (SUM(w*(x-ux)^2)^0.5
* sxy = SUM(w*(x-ux)*(y-uy))
*
* Returns mean SSIM. MSSIM(X,Y) = 1/M * SUM(SSIM(x,y))
*/
float iqa_ssim(const unsigned char *ref, const unsigned char *cmp, int w, int h, int stride,
int gaussian, const struct iqa_ssim_args *args)
{
int scale;
int x,y,src_offset,offset;
float *ref_f,*cmp_f;
struct _kernel low_pass;
struct _kernel window;
float result;
double ssim_sum=0.0;
struct _map_reduce mr;
/* Initialize algorithm parameters */
scale = _max( 1, _round( (float)_min(w,h) / 256.0f ) );
if (args) {
if(args->f)
scale = args->f;
mr.map = _ssim_map;
mr.reduce = _ssim_reduce;
mr.context = (void*)&ssim_sum;
}
window.kernel = (float*)g_square_window;
window.w = window.h = SQUARE_LEN;
window.normalized = 1;
window.bnd_opt = KBND_SYMMETRIC;
if (gaussian) {
window.kernel = (float*)g_gaussian_window;
window.w = window.h = GAUSSIAN_LEN;
}
/* Convert image values to floats. Forcing stride = width. */
ref_f = (float*)malloc(w*h*sizeof(float));
cmp_f = (float*)malloc(w*h*sizeof(float));
if (!ref_f || !cmp_f) {
if (ref_f) free(ref_f);
if (cmp_f) free(cmp_f);
return INFINITY;
}
for (y=0; y<h; ++y) {
src_offset = y*stride;
offset = y*w;
for (x=0; x<w; ++x, ++offset, ++src_offset) {
ref_f[offset] = (float)ref[src_offset];
cmp_f[offset] = (float)cmp[src_offset];
}
}
/* Scale the images down if required */
if (scale > 1) {
/* Generate simple low-pass filter */
low_pass.kernel = (float*)malloc(scale*scale*sizeof(float));
if (!low_pass.kernel) {
free(ref_f);
free(cmp_f);
return INFINITY;
}
low_pass.w = low_pass.h = scale;
low_pass.normalized = 0;
low_pass.bnd_opt = KBND_SYMMETRIC;
for (offset=0; offset<scale*scale; ++offset)
low_pass.kernel[offset] = 1.0f/(scale*scale);
/* Resample */
if (_iqa_decimate(ref_f, w, h, scale, &low_pass, 0, 0, 0) ||
_iqa_decimate(cmp_f, w, h, scale, &low_pass, 0, &w, &h)) { /* Update w/h */
free(ref_f);
free(cmp_f);
free(low_pass.kernel);
return INFINITY;
}
free(low_pass.kernel);
}
result = _iqa_ssim(ref_f, cmp_f, w, h, &window, &mr, args);
free(ref_f);
free(cmp_f);
return result;
}
/* _iqa_ssim */
float _iqa_ssim(float *ref, float *cmp, int w, int h, const struct _kernel *k, const struct _map_reduce *mr, const struct iqa_ssim_args *args)
{
float alpha=1.0f, beta=1.0f, gamma=1.0f;
int L=255;
float K1=0.01f, K2=0.03f;
float C1,C2,C3;
int x,y,offset;
float *ref_mu,*cmp_mu,*ref_sigma_sqd,*cmp_sigma_sqd,*sigma_both;
double ssim_sum, numerator, denominator;
double luminance_comp, contrast_comp, structure_comp, sigma_root;
struct _ssim_int sint;
/* Initialize algorithm parameters */
if (args) {
if (!mr)
return INFINITY;
alpha = args->alpha;
beta = args->beta;
gamma = args->gamma;
L = args->L;
K1 = args->K1;
K2 = args->K2;
}
C1 = (K1*L)*(K1*L);
C2 = (K2*L)*(K2*L);
C3 = C2 / 2.0f;
ref_mu = (float*)malloc(w*h*sizeof(float));
cmp_mu = (float*)malloc(w*h*sizeof(float));
ref_sigma_sqd = (float*)malloc(w*h*sizeof(float));
cmp_sigma_sqd = (float*)malloc(w*h*sizeof(float));
sigma_both = (float*)malloc(w*h*sizeof(float));
if (!ref_mu || !cmp_mu || !ref_sigma_sqd || !cmp_sigma_sqd || !sigma_both) {
if (ref_mu) free(ref_mu);
if (cmp_mu) free(cmp_mu);
if (ref_sigma_sqd) free(ref_sigma_sqd);
if (cmp_sigma_sqd) free(cmp_sigma_sqd);
if (sigma_both) free(sigma_both);
return INFINITY;
}
/* Calculate mean */
_iqa_convolve(ref, w, h, k, ref_mu, 0, 0);
_iqa_convolve(cmp, w, h, k, cmp_mu, 0, 0);
for (y=0; y<h; ++y) {
offset = y*w;
for (x=0; x<w; ++x, ++offset) {
ref_sigma_sqd[offset] = ref[offset] * ref[offset];
cmp_sigma_sqd[offset] = cmp[offset] * cmp[offset];
sigma_both[offset] = ref[offset] * cmp[offset];
}
}
/* Calculate sigma */
_iqa_convolve(ref_sigma_sqd, w, h, k, 0, 0, 0);
_iqa_convolve(cmp_sigma_sqd, w, h, k, 0, 0, 0);
_iqa_convolve(sigma_both, w, h, k, 0, &w, &h); /* Update the width and height */
/* The convolution results are smaller by the kernel width and height */
for (y=0; y<h; ++y) {
offset = y*w;
for (x=0; x<w; ++x, ++offset) {
ref_sigma_sqd[offset] -= ref_mu[offset] * ref_mu[offset];
cmp_sigma_sqd[offset] -= cmp_mu[offset] * cmp_mu[offset];
sigma_both[offset] -= ref_mu[offset] * cmp_mu[offset];
}
}
ssim_sum = 0.0;
for (y=0; y<h; ++y) {
offset = y*w;
for (x=0; x<w; ++x, ++offset) {
if (!args) {
/* The default case */
numerator = (2.0 * ref_mu[offset] * cmp_mu[offset] + C1) * (2.0 * sigma_both[offset] + C2);
denominator = (ref_mu[offset]*ref_mu[offset] + cmp_mu[offset]*cmp_mu[offset] + C1) *
(ref_sigma_sqd[offset] + cmp_sigma_sqd[offset] + C2);
ssim_sum += numerator / denominator;
}
else {
/* User tweaked alpha, beta, or gamma */
/* passing a negative number to sqrt() cause a domain error */
if (ref_sigma_sqd[offset] < 0.0f)
ref_sigma_sqd[offset] = 0.0f;
if (cmp_sigma_sqd[offset] < 0.0f)
cmp_sigma_sqd[offset] = 0.0f;
sigma_root = sqrt(ref_sigma_sqd[offset] * cmp_sigma_sqd[offset]);
luminance_comp = _calc_luminance(ref_mu[offset], cmp_mu[offset], C1, alpha);
contrast_comp = _calc_contrast(sigma_root, ref_sigma_sqd[offset], cmp_sigma_sqd[offset], C2, beta);
structure_comp = _calc_structure(sigma_both[offset], sigma_root, ref_sigma_sqd[offset], cmp_sigma_sqd[offset], C3, gamma);
sint.l = luminance_comp;
sint.c = contrast_comp;
sint.s = structure_comp;
if (mr->map(&sint, mr->context))
return INFINITY;
}
}
}
free(ref_mu);
free(cmp_mu);
free(ref_sigma_sqd);
free(cmp_sigma_sqd);
free(sigma_both);
if (!args)
return (float)(ssim_sum / (double)(w*h));
return mr->reduce(w, h, mr->context);
}
/* _ssim_map */
int _ssim_map(const struct _ssim_int *si, void *ctx)
{
double *ssim_sum = (double*)ctx;
*ssim_sum += si->l * si->c * si->s;
return 0;
}
/* _ssim_reduce */
float _ssim_reduce(int w, int h, void *ctx)
{
double *ssim_sum = (double*)ctx;
return (float)(*ssim_sum / (double)(w*h));
}
/* _calc_luminance */
IQA_INLINE static double _calc_luminance(float mu1, float mu2, float C1, float alpha)
{
double result;
float sign;
/* For MS-SSIM* */
if (C1 == 0 && mu1*mu1 == 0 && mu2*mu2 == 0)
return 1.0;
result = (2.0 * mu1 * mu2 + C1) / (mu1*mu1 + mu2*mu2 + C1);
if (alpha == 1.0f)
return result;
sign = result < 0.0 ? -1.0f : 1.0f;
return sign * pow(fabs(result),(double)alpha);
}
/* _calc_contrast */
IQA_INLINE static double _calc_contrast(double sigma_comb_12, float sigma1_sqd, float sigma2_sqd, float C2, float beta)
{
double result;
float sign;
/* For MS-SSIM* */
if (C2 == 0 && sigma1_sqd + sigma2_sqd == 0)
return 1.0;
result = (2.0 * sigma_comb_12 + C2) / (sigma1_sqd + sigma2_sqd + C2);
if (beta == 1.0f)
return result;
sign = result < 0.0 ? -1.0f : 1.0f;
return sign * pow(fabs(result),(double)beta);
}
/* _calc_structure */
IQA_INLINE static double _calc_structure(float sigma_12, double sigma_comb_12, float sigma1, float sigma2, float C3, float gamma)
{
double result;
float sign;
/* For MS-SSIM* */
if (C3 == 0 && sigma_comb_12 == 0) {
if (sigma1 == 0 && sigma2 == 0)
return 1.0;
else if (sigma1 == 0 || sigma2 == 0)
return 0.0;
}
result = (sigma_12 + C3) / (sigma_comb_12 + C3);
if (gamma == 1.0f)
return result;
sign = result < 0.0 ? -1.0f : 1.0f;
return sign * pow(fabs(result),(double)gamma);
}